某旅馆毕业设计毕业设计

某旅馆毕业设计毕业设计

ID:1429718

大小:6.05 MB

页数:90页

时间:2017-11-11

上传者:U-255
某旅馆毕业设计毕业设计_第1页
某旅馆毕业设计毕业设计_第2页
某旅馆毕业设计毕业设计_第3页
某旅馆毕业设计毕业设计_第4页
某旅馆毕业设计毕业设计_第5页
资源描述:

《某旅馆毕业设计毕业设计》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

某旅馆毕业设计毕业设计1建筑设计1.1设计资料1)工程名称:**旅馆2)气象条件:**地区,C类地面,基本风压KN/m²3)工程地质条件:建筑物场地地形平坦,经勘探未发现地下水,场地位2类一组(《抗震结构规范》表3.2)地震设防烈度为7度,抗震等级为二级。1.2工程概况本项目为6层钢筋混凝土框架结构体系,占地面积约为1391.04㎡,总建筑面积约为8346.24㎡;底层层高3.6m,标准层层高3.3m,平面尺寸27.6m×50.4m。室内地坪为±0.000m,室内外高差0.45m。框架梁柱现浇,屋面、楼面分别采用120mm和100mm厚现浇钢筋混凝土。1.3材料使用1)混凝土:梁柱板均使用C30混凝土。2)钢筋:纵向受力钢筋采用热轧钢筋HRB335,其余采用热轧钢筋HPB235。3)墙体:a.外纵墙采用390厚混凝土空心小砌块,两侧墙体均为20㎜厚抹灰。b.内隔墙采用250厚水泥空心砖,两侧均为20mm厚抹灰。c.卫生间隔墙采用60厚砖墙,内侧贴瓷砖(0.5KN/㎡)外侧为20㎜厚抹灰。D.女儿墙采用250厚加气砼砌块(7KN/㎡)两侧均为20厚抹灰,墙高900mm。4)窗:均为铝合金窗(0.4KN/m2)。5)门:除,为铝合金门(0.4KN/m2),其它均为木门(0.2KN/m2)。89 1.4结构选型1)结构体系选型:采用钢筋混凝土现浇框架结构体系。2)屋面结构:采用现浇混凝土肋型屋盖,刚柔性结合的屋面,屋面板厚120mm。3)楼面结构:采用现浇混凝土肋型屋盖,板厚100mm。4)楼梯结构:采用现浇板式双跑楼梯。5)天沟:采用现浇天沟。89 2结构方案2.1结构体系本建筑为旅馆办公楼,内设有客房、娱乐室、餐厅等,房间使用面积变化大,故选择建筑平面布置比较灵活的框架结构体系,框架结构建筑立面容易处理,结构自重较轻。且本建筑楼层数为六层,选用钢筋混凝土框架结构能够获得较好的经济效益。2.2结构布置及梁,柱截面尺寸的初选2.2.1梁柱截面尺寸初选主体结构共6层,首层层高为3.6m,2-6层高均为3.3m,建筑总高为20.1m。根据旅馆的使用功能要求,并考虑柱网的布置原则,本工程主体柱网为7.2m×7.8m和7.2m×2.1m。楼面板厚取100mm:====90mm;屋面板取120mm。1)梁截面尺寸的估算:1.AB跨:(1).主梁:L=7800㎜高==()7800=975mm~650mm,取700mm宽b=()=350mm~200mm,取300mm故框架横纵梁的截面尺寸为b×h=300㎜×700㎜;(2).次梁:L=7200㎜==()7200=900mm~600mm,取700㎜,b取300㎜故框架次梁的截面尺寸为b×h=300㎜×700㎜2.BC跨:(1).主梁:L=2100㎜==()2100=262mm~175mm,取450㎜b=()=225mm~150mm,取250mm89 故框架梁的截面尺寸为b×h=250㎜×450㎜表2-1估算梁的截面尺寸(㎜)及各层混凝土强度等级Tab2-1Thesectionalsizeofaroofbeamoftheformandgradeofintensityofeverylayerconcrete层数混凝土强度等级横梁(b×h)纵梁(b×h)次梁(b×h)AB,CD,EF跨BC,DE跨1~6C30300×700250×450300×700300×7002)柱截面尺寸的估算框架柱截面尺寸根据柱的轴压比限制,按下式计算:1.柱组合的轴压比设计值按照公式1-1计算:(1-1)式中::为考虑地震作用组合后柱轴力压力增大系数,边柱取1.3,等跨内柱取1.2,不等跨取1.25;:为按照简支状态计算柱的负荷面积;:为折算后在单位面积上的重力荷载代表值,近似取14KN/;:为验算截面以上楼层层数;2.框架柱验算(1-2)注:为框架柱轴压比限值,本方案为二级框架,则取0.8 为混凝土轴心抗压强度设计值,本方案为C30混凝土,则取14.3kN/㎜2由计算简图2-1可知边柱和中柱的负载面积可知:中柱:(7.2+7.2)/2×(7.8+2.1)/2=7.2×4.95㎡边柱:(7.2+7.2)/2×7.8/2=7.2×3.9㎡边柱:=(1.2×1.3×7.2×3.9×14×103×6)/19.1×10.8=240812mm2中柱:=(1.2×1.25×7.2×4.95×14×103×6)/19.1×10.8=293890mm289 根据上述计算结果,并综合考虑其他因素,取柱截面为正方形,初步估计柱的尺寸为600㎜×600㎜=360000>293890mm2,为计算简便中柱和边柱的尺寸相同,均为600㎜×600㎜。故初选柱的尺寸为600㎜×600㎜;2.2.2结构布置如图2-2所示:图2-1结构平面布置图Figure2-1structureofafloorplan注:梁的尺寸:L1=300㎜×700㎜,L2=300㎜×700㎜,L3=250㎜×450㎜,边柱、内柱的尺寸均为:600㎜×600㎜89 2.3框架结构的计算简图图2-2结构计算简图Fig.2-2Drawingofthestructuraldesign注:室内外高差0.45m,基础埋深0.5m,h=0.45+0.5+3.6=4.55m89 3重力荷载计算3.1屋面及楼面的永久荷载标准值1)屋面上人屋面30mm厚细石混凝土保护层高聚物改性沥青防水卷材20mm厚1:3水泥蛭石砂浆保温层40mm厚1:8水泥膨胀珍珠岩20mm厚1:3水泥砂浆找平100mm厚现浇钢筋混凝土屋面板20mm厚板下混合砂浆抹面合计:4.81KN/㎡2)1~5层楼面:大理石面层,水泥砂浆擦缝30厚1:3干硬性水泥砂浆面上撒2厚素水泥1.16KN/㎡水泥浆结合层一道结构层:100厚现浇钢筋混凝土板0.1m×25=2.5KN/㎡抹灰层:10厚混合砂浆0.01m×17=0.17KN/㎡合计:3.83KN/㎡3)女儿墙6厚水泥砂浆罩面0.006×20=0.12kN/m212厚水泥砂浆打底0.012×20=0.24kN/m2240厚砖墙0.24×17=4.080kN/m289 20厚水泥砂浆找平层0.02×20=0.4kN/m2合计:4.84kN/m24)楼梯,水泥砂浆楼面构造层:0.5KN/㎡结构层:100厚现浇钢筋混凝土板0.1m×25=2.5KN/㎡抹灰层:10厚混合砂浆0.01m×17=0.17KN/㎡合计:3.17KN/㎡3.2屋面及楼面可变荷载标准值1)根据《荷载规范》查得:上人屋面均布活荷载标准值2.0kN/m²楼面活荷载标准值2.0kN/m²(旅馆)浴室、厕所活荷载标准值2.0kN/m²走廊、门厅、活荷载标准值2.0kN/m²2)雪荷载:Sk=1.0×0.45KN/㎡=0.45KN/㎡屋面活荷载与雪荷载不同时考虑,两者取大者.3.3梁、柱、墙、窗、门重力荷载计算1)梁、柱可根据截面尺寸,材料容重及粉刷等计算出单位长度上的重力荷载;对墙、门、窗等可计算出单位面积上的重力荷载。计算结果见表3-1。表3-1梁、柱重力荷载标准值Tab3-1Roofbeam,postgravityloadstandardvalue层次构件b,mh,mγ,kN/m³βG,kN/m³li,mnGi,kNΣGi,kN1边横梁0.300.7025.001.055.5137.2271071.633429.57中横梁0.250.4525.001.052.9531.51879.73次梁0.300.7025.001.055.5137.5618750.14纵梁0.300.7025.001.055.5136.6421528.0789 柱0.600.6025.001.109.9003.6541924.56续表3-12~6边横梁0.300.7025.001.055.5137.2271071.633429.57中横梁0.250.4525.001.052.9531.51879.73次梁0.300.7025.001.055.5137.5618750.14纵梁0.300.7025.001.055.5136.6421528.07柱0.600.6025.001.109.9003.3541764.18注:1)表中β为考虑梁、柱的粉刷层重力荷载而对其重力荷载的增大系数;g表示单位长度构件重力荷载;n为构件数量。2)梁长度取净长;柱长度取层高。2)墙体自重(1)外墙为390mm厚混凝土空心小砌块,两侧均为20mm厚抹灰,则外墙单位墙面重力荷载为:11.8×0.39+17×0.02×2=5.282KN/m²(2)内墙为250mm厚水泥空心砖,两侧均为20mm厚抹灰,则内墙单位墙面重力荷载为:10.3×0.25+17×0.02×2=4.28KN/m²(3)木门单位面积重力荷载为0.2KN/m²;铝合金门单位面积重力荷载取0.4KN/m²,铝合金窗单位面积重力荷载取0.4KN/m²。(4)客房卫生间隔墙采用60mm厚砖墙,内侧贴瓷砖(0.5KN/m²),外侧为20mm厚抹灰,则卫生间墙单位墙面重力荷载为:0.06×17+0.02×17+0.5=1.86KN/m²墙体自重计算见表3-2.89 表3-2墙体重量Tab3-2Theweightofwall层次编号高度(m)长度(m)重量(KN)1层外墙AB,CD,EF轴3.6-0.7=2.97.2×6=43.25.282×2.9×43.2=661.48BC,DE轴3.6-0.45=3.151.5×4=6.05.282×3.15×6=99.83A轴,F轴3.6-0.7=2.950.45.282×32.9×50.4=1544.04内墙B轴2.9364.28×2.9×36=446.83C轴2.928.84.28×2.9×28.8=357.47D轴2.9364.28×2.9×36=446.83E轴2.9364.28×2.9×36=446.832轴-8轴3.6-0.7=2.97.8×18+7.8×2=1564.28×2.9×156=1936.272-6层外墙AB,CD,EF轴3.3-0.7=2.67.2×6=43.25.282×2.6×43.2=593.27BC,DE轴3.3-0.45=2.851.5×4=6.05.282×2.85×6.0=90.32A轴,F轴3.3-0.7=2.650.45.282×2.6×50.4=1384.3内墙B轴2.650.44.28×2.6×50.4=560.85C轴2.6364.28×2.6×36=400.61D轴2.6364.28×2.6×36=400.61E轴2.6364.28×2.6×36=400.612轴-8轴3.3-0.7=2.67.8×3×7=163.84.28×2.6×163.8=1822.771层墙体自重外墙:661.48+99.83+1544.04-(2.4×1.8×25+1.8×1.8×10+6.0×3.0+1.8×2.1×3)×(5.282-0.4)=1476.68KN内墙:446.83+357.47+446.83+446.83+1936.27+4.28×2.9×45.6-(2.4×2.1×9+0.9×2.1×10+1.8×2.1×2)×(4.28-0.2)=3907.19KN一层墙体自重为:1476.68+3907.19=5383.87KN2-6层墙体自重为:外墙:593.27+90.32+1384.3-(1.8×1.8×30+2.4×1.8×4)×(5.282-0.4)=1509KN内墙:560.85+400.61+400.61+400.61+1822.77+4.28×2.6×130.8-(0.9×2.1×36+2.4×2.1×2)×89 (4.28-0.2)-(1.5×1.8×5)×(4.28-0.4)=4669.88KN2-6层墙体自重为:1509+4669.88=6178.88KN3)门重力荷载标准值汇总表表3-3门重力荷载标准值汇总Tab3-3Loadmakingvariablyupvaluecoefficient门标号尺寸(m)荷载标准值M16.0×3.0G=0.4KN/m²M21.5×2.1G=0.4KN/m²M32.4×2.1G=0.2KN/m²M40.9×2.1G=0.2KN/m²M51.6×2.1G=0.2KN/m²4)窗重力荷载标准值汇总表表3-4窗重力荷载标准值汇总Tab3-4Loadmakingvariablyupvaluecoefficient窗标号尺寸(m)荷载标准值C12.4×1.8G=0.4KN/m²C21.8×1.8G=0.4KN/m²C31.5×1.8G=0.4KN/m²3.4重力荷载代表值集中于各质点的重力荷载Gi,为计算单元范围内各层楼面上的重力荷载代表值及上下各半层的墙、柱等重量。各可变荷载的组合值系数按表3-5的规定采用:无论是否为上人屋面,其屋面上的可变荷载均取雪荷载。表3-5可变荷载组合值系数Tab3-5Loadmakingvariablyupvaluecoefficient可变荷载种类组合值系数89 雪荷载0.5屋面积灰荷载0.5屋面活荷载不考虑续表3-5按实际情况考虑的楼面活荷载1.0按等效均布荷载考虑的楼面活荷载藏书库、档案库0.8其他民用建筑0.5吊车悬吊物重力硬钩吊车0.3软钩吊车不考虑简单的计算过程如下:顶层重力荷载代表值包括:屋面恒载、50%屋面荷载、半层梁自重、半层柱自重、半层墙自重。其它层重力荷载代表值包括:楼面荷载、50%楼面均布活荷载、梁自重、楼面上下个半层的柱自重、墙自重。主体结构总面积A=27.6×50.4=1391.04m²第一层:G1=3.83×1391.04+0.5×2.0×1391.04+3429.57+(1924.56+1764.18)/2+3.17×15.168+(5383.87+6178.88)/2=17822.12kN第二~五层:G2=G3=G4=G5=3.83×1391.04+0.5×2.0×1391.04+3429.57+1764.18+6178.88+3.17×15.168=18139.43kN第六层:G6=5.8×1391.04+0.5×0.45×1391.04+0.5×2.0×1391.04+3429.57+1764.18/2+6178.88/2+4.84×(27.6+50.4)×2+3.17×15.168=17976.28kN机房:Ge=5.8×15.8×7.8+0.5×0.45×15.8×7.8+5.282×3.0×(7.8+15.8)×2+3.17×15.168+30=1568.53kN注:电梯机房设备近似按30kN计算。综上所诉:各层重力荷载代表值如下:第一层G1=17822.12kN第三~五层G2=G3=G4=G5=18139.43kN89 第六层G6=17976.28kN机房:Ge=1568.53kN建筑物总重力荷载标准值为:ΣG=17822.12+18139.43×4+17976.28+1568.53=48920.29kN图3-1各质点重力荷载标准值Fig3-1drawingofdynamiccalculation89 4框架侧移刚度计算4.1框架梁柱的线刚度计算梁的线刚度;本结构为现浇楼盖,故考虑楼板的影响,对现浇楼面的边框架梁取I=1.5I0(I0为梁的截面惯性矩),对中框架梁取I=2.0I0,对于楼电梯间梁取I=I0。柱线刚度;其中为柱的截面惯性矩,h为框架柱的计算高度。横梁的线刚度计算结果列于表4-1,柱线刚度列于表4-2。表4-1横梁线刚度计算表Tab4-1Linerigidityibreckonerofthecrossbeam类别层次ECN/mm²bmmh,mmI0,mm4l,mmEc×I0/lN·mm1.5Ec×I0/lN·mm2.0Ec×I0/lN·mm边横梁1~63.0×1043007008.575×10978003.298×10104.947×10106.596×1010走道梁1~63.0×1042504501.898×10921002.711×10104.067×10105.422×1010表4-2柱线刚度ic计算表Tab4-2Threadrigidityicreckonerofthepost层次hc,mmEc,N/mm2b×h,mm2I0,mm4EcI0/hc,N·mm145503.0×104600×6001.080×10107.121×10102~633003.0×104600×6001.080×10109.818×10104.2横向框架柱侧移刚度D值计算柱侧移刚度D值按下式计算;式中,为柱侧移刚度修正系数,对不同情况按下式计算;89 其中表示梁柱线刚度比。根据梁、柱线刚度比的不同,结构平面布置图中的柱可分为中框架中柱和边柱,边框架中柱和边柱以及楼电梯间柱等。现以第2~6层C-1柱的侧移刚度计算为例,说明计算过程,其余柱的计算过程从略,计算结果分别见表4-3~表4-4。第2层C-1柱及与其相连的梁的相对线刚度如图4-1所示,图中数据取自表4-1和表4-2。图4-1C-1柱及与其相连梁的相对线刚度Figure4-1C-1columnanditsconnectedLiang'srelativestiffness则梁柱线刚度比为;==0.918αc==0.315得:D=αc=0.315×=34079N/mm表4-3中框架各柱侧移刚度D值(N/mm)Tab4-3TheframepostsideofChinamovesrigidityDvalue层次边柱(8根)中柱(22根)ΣDiαcDi1αcDi210.9260.487201011.6880.5932447769930220.6720.251271551.2440.38041111112168289 3~60.6720.251271551.2440.380411111121682表4-4边框架柱侧移刚度D值(N/mm)Form4-4TheframepostsidemovesrigidityDvalue层次A-1,A-9,F-1,F-9B-1,B-9,C-1,C-9,D-1,D-9,E-1,E-9ΣDiαcDi1αcDi210.6950.443182851.2660.5412233025178020.5040.201217460.9180.315340793596163~60.5040.201217460.9180.31534079359616表4-5楼,电梯间框架柱侧移刚度D值(N/mm)Tab4-5Loadmakingvariablyupvaluecoefficient层次E-2,E-3,E-4,E-5,E-7,E-8,F-2,F-3,F-4,F-5,F-7,F-8,ΣDiαcDi1αcDi211.1420.523215870.4630.3911613922635620.6120.234253160.3360.144155792453703~60.6120.234253160.3360.14415579245370将上述不同情况下得到的同层框架柱侧移刚度相加,即得框架各层层间侧移刚度∑Di,如表4-6所示。表4-6横向框架层间侧移刚度(N/mm)Tab4-6Thesidemovesrigidityamongthehorizontalframelayer层次123456∑Di147743817266681726668172666817266681726668由表可知,∑D1/∑D2=1477438/1726668=0.86>0.7,故该框架为规则框架,满足竖向规划建筑的要求。89 5横向水平荷载作用下框架结构的内力和侧移计算5.1横向自振周期计算本设计采用顶点位移法计算结构自振周期,因建筑为带有屋面局部突出间的房屋,突出间对主体结构顶点位移将产生影响,故按顶点位移相等的原则,将屋面突出部分重力荷载代表值折算到主体结构的顶层,计算如下;按公式5-1(5-1)将折算到主体结构的顶层,即Ge=1568.53×(1+)=1912.00KN结构顶点的假想位移由公式5-2~公式5-4。计算过程间表5-1,其中第6层的Gi为G6与Ge之和。(5-2)(5-3)(5-4)计算。计算过程见表5-1表5-1结构顶点的假想位移计算Tab5-1Theimaginationdisplacementofthesummitpinnacleofthestructureiscalculated层次Gi,kNVGi,kN∑Di,N/mm△ui,mmui,mm619888.2819888.28172666811.52237.2789 518139.4338027.71172666822.02225.75418139.4356167.14172666832.53203.73318139.4374306.57172666843.03171.20续表5-1218139.4392446.00172666853.54128.17117822.12110268.12147743874.6374.63结构基本周期按公式5-5计算;T1=1.7ΨT(5-5)计算基本周期T1,其中μT的量纲为m,取ΨT=0.7,则T1=1.7×0.7×=0.58s5.2水平地震作用及楼层地震剪力计算本设计中,结构主体高度不超过40m,质量和刚度沿高度分布比较均匀,变形以剪切型为主,故可用底部剪力法计算水平地震作用。结构总水平地震作用标准值计算如下:Geq=0.85∑Gi=0.85×109924.65=93435.95KNa1=()0.9amax=(0.35/0.58)0.9×0.08=0.051FEK=a1Geq=0.051×93435.95=4765.23KN因1.4Tg=1.4×0.35=0.49s0.016,剪重比满足要求。5.5水平地震作用下框架内力计算以图2-2中④轴线横向框架内力计算为例,说明计算方法,其余框架内力计算从略。设计采用D值法计算水平地震作用下的框架内力。框架柱端剪力及弯矩分别按公式5-10和公式5-11。Vij=(5-10)Mijb=Vij×yh(5-11)Miju=Vij×(1-y)h计算,其中Dij取自表4-3,∑Dij取自表4-6,层间剪力取自表5-1。各柱反弯点高度比y按公式5-12。y=y0+y1+y2+y3(5-12)确定。本例中各层梁截面相同,即线刚度相同故不考虑y1修正值,且只有一,二层分别需考虑修正值y2和y3,其余柱均无修正。具体计算过程及结果见表5-4~表5-5。表5-5各层边柱端弯矩及剪力计算Tab5-5Thesquareofpostendofeverysidelayerandstrengthcalculated层次hi,mVi,KN∑DijN/mmDi1Vi1KyMi1bMi1u63.301225.2717266682715519.270.6720.2717.1746.4289 53.302176.8617266682715534.240.6720.3640.6872.3143.302951.6017266682715546.420.6720.4061.2791.91续表5-533.303549.5017266682715555.820.6720.4582.89101.3123.303970.5617266682715562.440.6720.50103.03103.0314.554210.5614774382010157.290.9260.65169.4491.23表5-6各层中柱端弯矩及剪力计算Tab5-6Thesquareofpostendofeverysidelayerandstrengthcalculated层次hi,mVi,KN∑DijN/mmDi2Vi2KyMi2bMi2u63.301225.2717266684111129.171.2240.3533.6962.5753.302176.8617266684111151.831.2240.4170.13100.9143.302951.6017266684111170.281.2240.45104.37127.5633.303549.5017266684111184.511.2240.46128.29150.6023.303970.5617266684111194.541.2240.50155.99155.9914.554210.5614774382447769.761.6880.63199.97117.44注:表中M量纲为KN·m,V量纲为KN。梁端弯矩、剪力及柱轴力分别按公式5-13~公式5-15Mbl=(5-13)Mbr=Vb=(5-14)Ni=(5-15)计算。其中梁线刚度取自表5-1,具体计算过程见表5-7。89 表5-7梁端弯矩、剪力及柱轴力计算Tab5-7Squareofroofbeamend,strengthandaxisofacylindercalculated层次边横梁走道梁柱轴力MblMbrlVbMblMbrlVb边柱N中柱N646.4234.347.810.3528.2228.222.126.88-10.35-16.53589.4873.877.820.9460.7360.732.157.84-31.29-53.434132.59108.507.830.9189.1989.192.184.94-62.20-107.463162.58139.947.838.78115.03115.032.1109.55-100.98-178.232185.92156.037.843.84128.25128.252.1122.14-144.82-256.531194.26150.077.844.14123.36123.362.1117.49-188.96-329.88注:1)柱轴力的负号表示拉力,当为左地震作用时,左侧两根柱为拉力,对应的右侧两根柱为压力。2)表中M单位为kN·m,V单位为KN·m,N单位为KN,l单位为m。水平地震作用下框架的弯矩图、梁端剪力图及柱轴力图如图所示。89 图5-2地震作用下的框架弯矩图Fig5-2Thesqareofframeunderearthquake89 图5-3地震作用下的框架梁端剪力及柱轴力图Fig5-3Thestrenghofbeamandaxisofpillarunderearthquake89 6.横向风荷载作用下框架结构内力计算6.1风荷载标准值计算基本风压ω0=0.45KN/m²T1=0.55s,由《荷载规范》查得风荷载体型系数µs=0.8(迎风面),µs=-0.5(背风面),C类地区,H/B=20.55/50.4=0.408;由表查v=0.40,T1=0.58s,ω0T1²=0.45×0.58²=0.15KN.s²/m²,ξ=1.26,则风振系数由下式计算;βZ=1+=1+本建筑仍取④轴线横向框架,其负载宽度为7.2m,根据各层标高处的高度Hi由表查取µz,代入上式可得各楼层标高处的q(z)见下表6-1,q(z)沿房屋高度的分布见下图6-1表6-1沿房屋高度分布风荷载标准值Tab6-1Highlydistributethewindandloadstandardvaluealongthehouse层次HiHi/HµzβzW。,KN/㎡Wk,KN/㎡q(k),KN/m620.551.0001.30.8701.5790.450.8045.789517.250.8391.30.8091.5230.450.7215.191413.950.6791.30.7401.4620.450.6334.558310.650.5181.30.7401.3530.450.5864.21927.350.3581.30.7401.2440.450.5393.88114.050.1971.30.7401.1340.450.4913.535图6-1风荷载沿房屋高度的分布(单位:KN/m)Fig6-1Thedistributionofwindloadingsalongeachfloor《荷载规范》规定,对于高宽比大于1.5的房屋结构,应采用风振系βZ来考虑风压脉动的影响。本结构房屋高度H=20.55<40m,且H/B=20.55/50.4=0.408<1.5,因此,该房屋不需要考虑风压脉动的影响。框架结构分析时,应按静力等效原理将分布风荷载转化为节点集中荷载。框架结构分析时,应按静力等效原理将以上算得的分布风荷载转化为节点集中荷载。计算结果见表6-2:表6-2各层节点集中荷载Tab6-2Everylayernodeconcentratesonloading89 层次q(k),KN/mHu/mHl/mFk/KN65.7893.33.39.5555.1913.33.317.1344.5583.33.315.0434.2193.33.313.9223.8813.33.312.8113.5353.64.0513.52图6-2等效节点集中风荷载(kN)Fig6-2Theconcentrationwindloadingsofequivalentnode6.2风荷载作用下水平位移验算根据求得的水平荷载,计算层间剪力Vi,然后根据前面求得的《横向框架柱侧移刚度D值计算表》求出④轴线框架的层间侧移刚度,再根据弹性理论计算各层的相对侧移和绝对侧移。计算过程见下表6-3。表6-3风荷载作用下框架层间剪力及侧移Tab6-3Cutstrengthandsidemoveamongtheframelayerunderthefunctionofloadingofwind层次Fi,kNVi,kN∑Di,kN/m△ui,mmuT,mmHi,mm△ui/hi69.559.552187540.0446.65833001/75000517.1326.682187540.1226.61433001/27049415.0441.722187540.1916.49233001/1727789 313.9255.642187540.2546.30133001/12992212.8168.452187540.3136.04733001/10543113.5281.971381100.5940.59445501/7660风荷载作用下框架最大层间位移角为1/7660<1/550,满足规范要求。6.3风荷载作用下框架结构内力计算风荷载作用的框架结构内力计算表格各项计算公式与水平地震作用下的相同结果见下表;表6-4各层边柱端弯矩及剪力计算Tab6-4Curvedsquareofpostendofeverysidelayerandstrengthcalculated层次hi,mVi,KN∑DijKN/mDiKN/mVijKNiyMijbKN/mMijuKN/m63.39.55218754271551.190.670.270.062.8753.326.68218754271553.310.670.363.936.9943.341.72218754271555.180.670.406.8410.2633.355.64218754271556.910.670.4510.2612.5423.368.45218754271558.500.670.5615.7112.3414.5581.971381102010111.930.930.6535.2819.00表6-5各层中柱端弯矩及剪力计算Tab6-5Curvedsquareofpostendofeverysidelayerandstrengthcalculated层次hi,mVi,KN∑DijKN/mDiKN/mVijKNiyMijbKN/mMijuKN/m63.39.55218754411111.791.220.352.073.8453.326.68218754411115.011.220.416.789.7543.341.72218754411117.841.220.4511.6414.2333.355.642187544111110.461.220.4615.8818.6489 23.368.452187544111112.861.220.5021.2221.2214.5581.971381102447714.531.690.6341.6524.46表6-6梁端弯矩、剪力及柱轴力计算Tab6-6Thesquareofroofbeamend,strengthandaxisofcylindercalculated层次边梁走道梁柱轴力MblMbrlVbMblMbrlVb边柱N中柱N62.872.107.80.641.731.732.11.65-0.64-1.0158.056.497.81.865.335.332.15.08-2.50-4.23414.1911.537.83.309.489.482.19.03-5.80-9.96319.3816.627.84.6213.6613.662.113.01-10.42-18.35222.6020.367.85.5116.7416.742.115.94-15.93-28.78134.7125.077.87.6620.6120.612.119.63-23.59-40.75注:1)柱轴力的负号表示拉力,当为左地震作用时,左侧两根柱为拉力,对应的右侧两根柱为压力。2)表中M单位为kN·m,V单位为KN·m,l单位为m。89 图6-3风荷载作用下的框架弯矩图Fig6-3Thesqareofframeunderwindloadings89 图6-4风荷载作用下的梁端剪力及柱轴力图Fig6-4Thestrenghofbeamandaxisofpillarunderwindloadings7竖向荷载作用下框架结构的内力计算89 7.1计算单元取④轴线横向框架进行计算,计算单元宽度为7.2m,由于房间内布置有次梁,故直接传给该框架的楼面荷载如图中的水平阴影线所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中荷载的形式传给横向框架,作用于各节点上。由于纵向框架梁的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。图7-1横向框架计算单元Fig7-1Thecomputingelementofcrossframe7.2荷载计算[3]7.2.1恒载计算89 图7-2各层梁上作用的恒荷载Fig7-2Permanentloadofeachbeam在上图7-2中,q1、q1´代表横梁自重,为均布荷载形式。对于第6层:q1=0.3×0.7×25×1.05=5.513KN/m,q1´=0.25×0.45×25×1.05=2.953KN/m,q2和q2´分别为房间和走道板传给横梁的梯形荷载和三角形荷载,由图7-2所示几何关系可以得出:q2=5.8×3.6=20.88KN/m,q2´=5.8×2.1=12.18KN/mP1、P2分别为由边纵梁、中纵梁直接传给柱的恒载,它包括梁自重、楼板重和女儿墙等重力荷载,计算如下:P1=[(3.6×1.8×)×2+]×5.8+5.5125×7.2+4.84×1.1×7.2=159.45KNP2=[(3.6×1.8×)×2++(×1.05×2)]×5.8+5.513×7.2=160.8KN集中力矩;对1~5层,q1包括梁自重和其上横梁自重,为均匀荷载。其它荷载计算方法同第6层,结果为89 q1=5.5125+4.28×3=18.35KN/mq1´=5.5125KN/mq2=3.83×3.6=13.788KN/mq2´=3.83×2.1=8.043KN/mP1=(3.6+1.8×2)×3.3+5.5125×7.2+[(7.2-0.6)×(3.3-0.7)-1.8×1.8×2]×5.282+1.8×1.8×0.4×2=122.45KNP2=(3.6+1.8×2)×3.3+5.5125×7.2+4.28×7.2+(3.3-0.7)×(7.2-0.6)×4.28=157.71KN集中力矩;7.2.2活荷载计算活荷载作用下各层框架梁上的荷载分布如下图7-3所示图7-3各层梁上作用的活荷载Fig7-3Theliveloadofeachbeam对于第6层q2=3.6×2.0=7.2KN/mq2´=2.1×2.0=4.2KN/mP1=(3.6×1.8+5.4×1.8)×3=48.6KNP2=(3.6×1.8+5.4×1.8)×3+1.05×7.2×2=63.72KN集中力矩;89 对1~5层,q2为房间传给横梁的梯形活荷载,几何关系可得;q2=2.0×3.6=7.2KN/mq2´=2.0×2.1=4.2KN/mP1=(3.6×1.8+×1.8)×3=48.6KNP2=(3.6×1.8+×1.8)×3+1.05×7.2×2.0=63.72KN集中力矩;将上述计算结果汇总,见表7-1和表7-2。表7-1横向框架恒载汇总表Tab7-1Summaryinpermanentyearofthehorizontalframe层次q1KN/mq1´KN/mq2KN/mq2´KN/mP1KNP2KNM1KNM2KN65.5132.95320.8812.18159.45160.8031.8932.161~518.355.512513.798.04122.45157.7124.4931.54表7-2横向框架活载汇总表Tab7-2Summaryinlivingyearofthehorizontalframe层次q2,KN/mq2´,KN/mP1,KNP2,KNM1,KNM2,KN67.24.248.6063.729.7212.741~57.24.248.6063.729.7212.747.3内力计算7.3.1恒载、活载作用在的梁端,柱端弯矩计算梁端、柱端弯矩采用弯矩二次分配法计算,由于结构和荷载对称,故计算时可用半框架。弯矩计算过称如图7-4和图7-5,所得弯矩图如图7-6和图7-7所示;89 图7-4恒荷载作用下横向框架的二次分配法,kN·mFig7-4SeconddistributionFranceofthecrossframeunderdeadload89 图7-5活荷载作用下横向框架的二次分配法,kN·mFig7-5SeconddistributionFranceofthecrossframeunderliveload89 图7-6竖向恒荷载作用下框架弯矩图,kN·mFig7-6Thesquareofframeunderverticaldeadload图7-7竖向活荷载作用下框架弯矩图,kN·mFig7-7Thesquareofframeunderverticalliveload89 7.3.2梁端剪力和柱轴力的计算梁端剪力可根据梁上竖向荷载引起来的剪力与梁端弯矩引起的剪力相叠加而得。柱轴力可由梁端剪力和节点集中力叠加而得到。计算柱底轴力还需要考虑柱的自重,如表7-3和表7-4所示。表7-3恒载作用下梁端剪力及柱轴力(KN)Tab7-3Thestrengthofbeamendunderthepermanentload层次荷载引起剪力弯矩引起剪力总剪力柱轴力AB跨BC跨AB跨BC跨AB跨BC跨A柱B柱VA=VBVB=VCVA=-VBVB=VCVAVBVB=VCN顶N底N顶N底643.659.49-0.31043.3443.969.49202.79235.46214.25246.92528.5410.01-0.55027.8529.0910.01187.30219.97199.90232.57428.5410.01-0.50028.0429.0410.01187.49220.16199.85232.52328.5410.01-0.50028.0429.0410.01187.49220.16199.85232.52228.5410.01-0.48028.0629.0210.01187.51220.18199.83232.50128.5410.01-0.74027.8029.2810.01187.25222.89200.09235.73表7-4活载作用下梁端剪力及柱轴力(KN)Tab7-4Thestrengthofbeamendunderthelivingload层次荷载引起剪力弯矩引起剪力总剪力柱轴力AB跨BC跨AB跨BC跨AB跨BC跨A柱B柱VA=VBVB=VCVA=-VBVB=VCVAVBVB=VCN顶=N底N顶=N底622.462.21-0.12022.3422.582.2170.9488.51522.462.21-0.05022.4122.512.2171.0188.44422.462.21-0.06022.4022.522.2171.0088.45322.462.21-0.06022.4022.522.2171.0088.45222.462.21-0.06022.4022.522.2171.0088.45122.462.21-0.09022.3722.552.2170.9788.4889 8框架内力组合8.1组合原则根据《建筑结构荷载规范》(GB50009-2001),建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载组合,并应取各自的最不利的效应组合进行设计。本设计考虑以下两种基本组合本工程为一般框架结构,根据《建筑结构荷载规范》(GB50009-2001)的基本组合可采用简化规则,并应按下列组合值中取最不利值确定;由可变荷载效应控制的组合;由永久荷载效应控制的组合;对于本设计,上述基本组合的荷载分项系数及可变荷载组合值系数取值如下;由可变荷载效应控制的组合,永久荷载分项系数取1.2;由永久荷载效应控制的组合,永久荷载分项系数取1.35;可变荷载分项系数取1.4,;根据楼面活荷载类别,可变荷载组合值系数取0.7。(1)地震作用效应与重力荷载代表值效应的组合根据《建筑抗震设计规范》(GB50011-2010),结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算;本设计可不进行风荷载及竖向地震作用计算。故上述组合表达式可写为;8.2框架梁内力组合由于钢筋混凝土结构具有塑性内力重分布性质,在竖向荷载作用下要考虑适当降低梁端弯矩,以减少负弯矩钢筋的拥挤现象。本设计为现浇框架结构,支座负弯矩调幅系数89 取0.8。另外,对于考虑地震作用组合的内力,应该根据不同的构件类型考虑相应的抗震承载力调整系数。下面以第一层AB跨梁考虑地震作用的组合为例,说明框架梁内力的组合方法。各层梁的内力组合结果见表8-1。(1)支座弯矩及剪力支座A截面;同理;左震;;右震;;则可得组合内力如下;左震右震同理可得支座B截面的组合内力如下;左震;;右震;;89 (1).跨间最大正弯矩跨间最大正弯矩根据梁端弯矩组合值及梁上荷载设计值,由平衡条件确定。(1).AB跨计算简图如下图所示;图8-1均布梯形荷载下的计算图形Fig8-1Thecalculationgraphicsunderdistributiontrapeziumload由图可得;若,说明,其中为最大正弯矩至A支座的距离,则可由下式求解;将求得的值代入下式可得跨间最大正弯矩值若说明则;若则(2).BC跨计算简图如下图所示89 图8-2三角形荷载下的计算图形Fig8-2Thecalculationgraphicsundertriangolarload由图可得;距A支座为位置截面的弯矩为;本例中,梁上荷载设计值;左震右震89 根据《建筑抗震设计规范》规定一,二,三级的框架梁,其梁端截面组合的剪力设计值应按下式调整;为梁端剪力增大系数,一级取1.3,二级取1.2,三级取1.1;第一层AB跨;左震;右震;则89 表8-1框架梁内力组合表TAb8-1Theframesetsaroofbeaminplacetheinternalforcemakesformsup层次截面内力→←→←6M-66.52-18.707.8551.15-13.33-146.33-10.00-109.75-107.31-105.2883.25V68.5619.061.8011.7167.0597.5056.9982.88111.18108.91M-71.91-20.885.098.17-129.41-43.17-97.05-32.38-117.06-115.09V70.9319.821.8011.7199.7469.2984.7858.90114.57112.32M-12.28-3.347.8651.1951.80-81.2838.8560.96-20.22-19.7450.30V5.310.005.8237.92-42.9155.67-36.4847.327.186.38跨间108.1483.8281.1162.87127.17124.7454.2654.2640.6940.69--5M-79.95-21.5221.6083.7812.98-204.869.74-153.65-115.32-113.8996.68V77.3819.325.1120.2666.87119.5556.84101.62110.81108.72M-81.89-22.2115.18862.10-178.99-17.53-134.24-13.15-117.81-116.47V78.3519.565.1120.26120.3667.68102.3057.53111.68109.61M-7.16-1.3823.4395.83115.99-133.1886.99-99.89-9.71-9.3690.50V5.31017.3670.99-85.9198.66-73.0283.867.816.38跨间117.1688.4187.8787.87108.62107.61117.42117.4288.0688.06--89 续表8-1层次截面内力→←→←4M-78.79-21.0335.33107.7445.52-234.6134.14-175.96-112.78-111.37105.31V77.5919.288.9027.3057.62128.6048.97109.31110.63108.53M-81.22-21.9328.76488.82-212.9418.00-159.7013.50-116.34-115.01V78.4319.608.9027.30129.6158.63110.1749.84111.86109.80M-7.68-1.5744.38137.07168.98-187.40126.74-140.55-10.85-10.48127.63V5.31032.87101.53-125.62138.37-106.77117.627.186.38跨间125.88100.3594.4175.26110.63109.59170.52170.52127.89127.89--3M-78.79-21.0354.04142.2890.41-279.5167.81-209.63-112.78-111.37113.75V77.5919.2812.9834.2448.59137.6241.30116.98110.63108.53M-81.22-21.9339.44104.27-232.0238.09-174.7728.57-116.34-115.01V78.4319.6012.9834.24138.6449.61117.8442.16111.86109.80M-7.68-1.5960.87160.91199.98-218.40149.98-163.80-10.85-10.48149.10V5.310.0045.09119.20-148.58161.33-126.29137.137.186.38跨间150.1899.60112.6474.70110.63109.59201.51201.51151.13151.13--89 层次截面内力→←→←2M-80.00-21.0961.12143.3091.49-281.0968.62-210.82-113.08-111.67116.85V77.6119.2915.7036.845.28140.9738.49119.82110.65108.56M-81.34-21.9751.8994121.67-255.7860.56-191.8445.42-116.51-115.18V78.4219.5915.7036.8141.9446.26120.6539.32111.84109.78M-7.58-1.5680.08187.76234.99-253.19176.24-189.89-10.71-10.35173.27V5.31059.32139.08-174.43187.19-148.27159.117.186.38跨间144.38115.04108.2886.28110.39109.36236.51236.51177.38177.38--1M-90.92-20.1182.18194.26143.43-361.64107.57271.23-108.25-106.86121.34V38.9919.2119.2244.1410.59104.179.088.54110.32108.22M-79.30-21.4256.24118.06.06-248.6558.32-186.4843.74-113.59-112.30V78.6519.6719.2240.34146.8141.94124.7935.65112.17110.11M-9.56-2.1086.79182.2225.39-248.32169.04-186.24-13.54-13.15168.26V5.310.0064.29134.96-169.07181.83-143.71154.557.186.38跨间176.80104.13132.6078.10114.27113.21227.30227.30170.47170.47--注;(1)承载力抗震调整系数,抗弯取0.75,抗剪取0.85。为梁端剪力增大系数,三级取1.1。89 (2)表中和分别为AB跨和BC跨的跨间最大正弯矩。89 8.3框架柱内力组合取每层柱顶和柱底两个控制截面进行组合,遵循“强柱弱梁,强剪弱弯”的设计原则。本设计房屋抗震等级为三级,因梁端弯矩设计之和与柱端弯矩设计之和相差不大,故直接将柱端弯矩设计值乘以增大系数以简化计算。柱剪力设计值则按下式计算;      框架柱内力组合的方法与框架梁类似,在此不再举例说明。各层A柱,B柱的组合结果见下表;表8-2A横向框架A柱内力组合表Tab8-2ThecurvedsquareofhorizontalframeApostandaxlestrengthassociation层次截面内力SGkSQk1.35SGk+SQk1.2SGk+1.4SQkSWk1.2SGk+1.26(SQk+SWk)→←6柱顶M56.0218.5193.7793.147.8580.66100.45N244.3351.46380.28365.241.80355.77360.30柱底M-37.32-12.54-62.68-62.352.62-57.30-63.89N278.9851.46427.05406.821.80397.35401.88V-25.93-8.63-43.46-43.192.91-38.32-45.655柱顶M27.789.5046.8246.6418.9821.3969.23N494.65103.18768.89738.036.91714.88732.29柱底M-31.60-10.72-53.16-52.9210.22-38.54-64.30N529.30103.18815.67779.616.91756.46773.87V-16.50-5.61-27.77-27.668.11-16.65-37.094柱顶M31.6010.7253.1652.9225.1119.7883.06N744.86154.871157.321110.6415.811069.041108.88柱底M-31.60-10.72-53.16-52.9220.55-25.53-77.31N779.51154.871204.11152.2215.811110.621150.46V-17.56-5.95-29.53-29.4012.68-12.59-44.553柱顶M31.6010.7253.1652.9233.499.2293.6289 续表8-2N995.06206.551545.751483.2528.791418.051490.61柱底M-31.16-10.56-52.41-52.1841.201.22-102.62N1029.71206.551592.531524.8328.791459.631532.19V-17.43-5.91-29.33-29.1916.92-7.05-49.682柱顶M32.2710.9454.2854.0433.7110.0394.98N1245.28258.241934.211855.8744.491763.671875.77柱底M-39.07-13.25-65.74-65.4441.20-11.67115.50N1279.93258.241980.981897.4544.491805.251917.35V-19.82-6.72-33.34-33.1920.81-6.03-58.471柱顶M20.767.0334.9234.7540.97-17.8585.40N1495.31309.852322.332228.1763.712104.512265.07柱底M-10.38-3.51-17.46-17.3895.60103.57-137.34N1539.37309.852381.82281.0363.712157.382317.93V-7.00-2.37-11.77-11.7230.6927.29-50.05续表8-2层次截面内力SGESEhK1.2SGE+1.3SEhK→←→←6柱顶M56.7851.151.64134.641.64134.641.23100.98N244.3711.71278.02308.47208.52231.35柱底M-41.3117.05-27.41-71.74-27.41-71.74-20.56-53.80N279.0211.71319.60350.05239.70262.54V-27.2518.95-8.07-57.335柱顶M34.0666.74-45.89127.62-45.89127.62-34.4295.72N520.5131.97583.05666.18437.29499.63柱底M-36.9635.942.37-91.072.37-91.071.77-68.30N555.1631.97624.63707.76468.47530.82V-19.7328.5213.40-60.744柱顶M36.9671.81-49.00137.70-53.90151.47-43.12121.1889 续表8-2N796.5659.27878.821032.93703.05826.34柱底M-36.9658.7532.03-120.7335.23-132.8028.18-106.24N831.2159.27920.401074.51736.32859.61V-20.5336.2722.51-71.783柱顶M36.9683.52-64.23152.93-70.65168.22-56.52134.58N1072.6193.521165.561408.70932.451126.96柱底M-36.4468.3445.11-132.5749.62-145.8239.70-116.66N1107.2693.521207.141450.28965.711160.23V-20.3942.1830.37-79.302柱顶M37.7474.96-52.17142.73-57.38157.01-45.91125.61N1348.67130.321449.001787.821159.201430.26柱底M-45.7091.6264.27-173.9570.69-191.3456.55-153.07N1383.32130.321490.581829.401192.461463.52V-23.1846.2732.34-87.971柱顶M24.2880.74-75.83134.09-83.41147.50-66.73118.00N1624.51170.651727.562171.261382.051737.01柱底M-12.14188.39230.34-259.47264.89-298.39211.91-238.71N1668.57170.651780.432224.131424.341779.30V-8.1860.4868.80-88.44表8-3横向框架B柱内力组合表Tab8-3ThecurvedsquareofhorizontalframeBpostandaxlestrengthassociation层次截面内力SGkSQk1.35SGk+SQk1.2SGk+1.4SQkSWk1.2SGk+1.26(SQk+SWk)→←6柱顶M-45.02-14.15-74.64-73.8312.95-88.17-55.54N267.2971.66431.07421.074.02405.97416.11柱底M30.869.7451.2150.677.458.6339.99N301.9471.66477.85462.654.02447.55457.69V21.086.6434.9634.595.6540.7826.5389 续表8-35柱顶M-24.41-7.79-40.59-40.2031.22-78.440.23N548.59147.92885.56865.4016.27824.19865.19柱底M26.658.4644.2743.8325.5474.8210.46N583.24147.92932.34906.9816.27865.77906.77V14.184.5123.5723.3415.7742.572.844柱顶M-26.65-8.46-44.27-43.8347.60-102.6117.33N830.00224.211340.231309.9040.241227.811329.22柱底M26.658.4644.2743.8341.1394.47-9.19N864.65224.211387.011351.4840.241269.391370.80V14.804.7024.5924.3524.6554.75-7.373柱顶M-26.65-8.46-44.27-43.8359.17-117.2031.92N1111.41300.511794.911754.4172.351621.181803.50柱底M26.398.3843.8443.4059.17116.78-32.33N1146.06300.511841.691795.9972.351662.761845.08V14.734.6824.4724.2332.8765.00-17.852柱顶M-27.13-8.62-45.08-44.6372.80-135.1448.30N1392.81376.802249.562198.90115.972000.032292.26柱底M31.9110.1353.0052.4772.80142.78-40.67N1427.46376.802296.342240.48115.972041.612333.84V16.405.2127.2526.9740.4477.20-24.711柱顶M-17.28-5.51-28.73-28.4570.23-116.1760.81N1674.40453.172704.552643.72161.032377.382783.17柱底M8.642.7514.3614.22115.27159.08-131.40N1718.46453.172764.022696.58161.032430.242836.04V5.831.869.689.5941.6961.85-43.1989 续表8-3层次截面内力SGESEhK1.2SGE+1.3SEhK→←→←6柱顶M-45.8084.35-164.6254.70-164.6254.70-123.4741.02N267.2526.20286.63354.76214.97266.07柱底M34.0148.19103.46-21.84103.46-21.8477.59-16.38N301.9026.20328.21396.34246.16297.26V22.1736.8274.47-21.265柱顶M-29.22109.74-177.73107.60-195.50118.36-156.4094.69N586.7276.93604.06804.07483.24643.26柱底M30.8889.79153.78-79.67169.16-87.64135.33-70.11N621.3776.93645.64845.65516.51676.52V16.6955.4392.09-52.024柱顶M-30.88136.10-213.99139.88-235.39153.87-188.31123.10N906.28151.16891.021284.05712.821027.24柱底M30.88117.62189.96-115.85208.96-127.44167.17-101.95N940.93151.16932.601325.63746.081060.50V17.1570.48112.21-71.043柱顶M-30.88147.56-228.89154.78-251.78170.26-201.42136.21N1225.84236.121164.051777.96931.241422.37柱底M30.58147.56228.53-155.14251.38-170.65201.10-136.52N1260.49236.121205.631819.54964.511455.63V17.0781.98127.06-86.092柱顶M-31.44161.87-248.16172.70-272.98189.96-218.38151.97N1545.38338.401414.542294.381131.631835.50柱底M36.97161.87254.80-166.06280.28-182.67224.22-146.13N1580.03338.401456.122335.961164.901868.76V19.0089.93139.71-94.1089 续表8-31柱顶M-20.04138.39-203.95155.87-224.35171.45-179.48137.16N1865.15433.021697.262801.111340.212240.89柱底M10.02227.15307.32-283.28353.42-325.77282.73-260.61N1909.21433.021728.122853.981382.502283.18V6.7582.14114.89-98.6889 9截面设计9.1承载力抗震调整系数考虑地震作用时,结构构件的截面设计采用下面的表达式:(9-1)式中---承载力抗震调整系数取值见表2-19S---地震作用效应或地震作用效应与其它荷载效应的基本组合R—结构构件的组合注意在截面配筋时,组合表中与地震力组合的内力均应乘以后再与静力组合的内力进行比较,挑选出最不利内力;表9-1承载力抗震调整系数Tab9-1Beartheweightofstrengthantidetonationandadjustcoefficient材料结构构件受力状态钢筋混凝土梁受弯0.75梁轴压比﹤0.15的墙偏压0.75轴压比的墙偏压0.80抗震墙偏压0.85各类构件受剪、偏压0.859.2横向框架梁截面设计以第一层梁为例,梁控制截面的内力如图9-1所示,图中单位为,单位为砼强度等级C30,,纵筋为HRB335,,箍筋为HPB235,89 1)梁的正截面强度计算见表9-2当梁下部受拉时,按T形截面设计;当梁上部受拉时,按矩形截面设计。翼缘计算宽度当按跨度考虑时,按梁间距考虑时,按翼缘厚度考虑时,此种情况不起控制作用。故取表9-2框架梁纵筋Table9-2framebeamlongitudinalreinforcement一层截面Ⅰ—ⅠⅠ—ⅠⅡ—ⅡⅢ—ⅢⅢ—ⅢⅣ—ⅣⅣ—ⅣⅤ—ⅤM()-361.64106.86176.80-248.6543.74-248.3213.15227.30b×h0(mm2)300×665250×415()32.4744.5828.38M0()-329.1774.39176.80-204.07-0.84-219.94-15.23227.30()-246.8855.79132.60-153.05-0.63-164.96-11.42170.480.130.0300.0080.0800.00030.2680.0190.0990.140.0300.0080.0830.00030.3190.0190.1040.9240.9850.9960.9571.000.8010.9900.945(mm2)1339.28283.91667.33801.643.161454.1692.651449.01选筋4Φ224Φ224Φ184Φ224Φ224Φ224Φ224Φ22实配面积(mm2)15211521101815211521152115211521ρ%0.760.760.510.760.761.471.471.47二层截面Ⅰ—ⅠⅠ—ⅠⅡ—ⅡⅢ—ⅢⅢ—ⅢⅣ—ⅣⅣ—ⅣⅤ—ⅤM()-281.0968.62144.38-255.7845.42-253.1910.35236.5189 b×h0(mm2)300×665250×415续表9-2()42.2942.5856.16M0()-238.826.33144.38-213.22.84-197.0345.81236.51()-179.119.75108.29-159.92.13-147.7734.36177.380.090.010.0060.0840.0010.240.0560.1030.0940.010.0060.0880.0010.2790.0580.1090.951.001.000.961.000.860.970.95(mm2)945.099.00542.8834.910.71380.1284.51499.7选筋4Φ224Φ224Φ184Φ224Φ224Φ224Φ224Φ22实配面积(mm2)15211521101815211521152115211521ρ%0.760.760.510.760.761.471.471.47三层截面Ⅰ—ⅠⅠ—ⅠⅡ—ⅡⅢ—ⅢⅢ—ⅢⅣ—ⅣⅣ—ⅣⅤ—ⅤM()-279.5167.81150.18-233.0228.57-218.4010.48201.51b×h0(mm2)300×665250×415()41.2941.5948.40M0()-238.2226.52150.18-191.43-13.02-170.0037.92201.51()-178.6719.89112.64-143.57-9.77-127.5028.44151.130.0940.0100.0070.0760.0050.2070.0460.0880.0990.010.0070.0790.0050.2340.0470.0920.951.001.000.961.000.880.980.95(mm2)942.799.7564.6749.649.01163.7233.11277.8选筋4Φ184Φ184Φ184Φ224Φ224Φ224Φ224Φ2289 实配面积(mm2)10181018101815211521152115211521ρ%0.510.510.510.760.761.471.471.47续表9-2四层截面Ⅰ—ⅠⅠ—ⅠⅡ—ⅡⅢ—ⅢⅢ—ⅢⅣ—ⅣⅣ—ⅣⅤ—ⅤM()-234.6134.14125.88-212.9413.50-187.4010.48170.52b×h0(mm2)300×665250×415()38.5838.8841.51M0()-196.034.44125.88-174.0625.38-145.8931.03170.52()-147.023.3394.41-130.5519.04-109.4223.27127.650.0770.0020.0060.0690.010.1780.0380.0740.080.0020.0060.0720.010.1980.0390.0770.961.001.000.961.000.900.980.96(mm2)767.616.7473.2681.795.4976.5190.71068.0选筋4Φ204Φ204Φ184Φ204Φ204Φ204Φ204Φ22实配面积(mm2)12571257101812571257125712571521ρ%0.630.630.510.630.631.211.211.47五层截面Ⅰ—ⅠⅠ—ⅠⅡ—ⅡⅢ—ⅢⅢ—ⅢⅣ—ⅣⅣ—ⅣⅤ—ⅤM()-204.869.74117.16-178.9913.15133.189.36117.42b×h0(mm2)300×665250×415()35.8736.1129.6M0()-168.9926.13117.16142.8822.96103.5820.24117.42()-126.7419.6087.87107.1617.2277.6915.1888.070.0670.010.0050.0560.0090.1260.0250.05189 0.0690.010.0050.0580.0090.1350.0250.0520.971.001.000.971.000.930.990.97续表9-2(mm2)654.998.2440.5553.886.3671.0123.2729.3选筋4Φ204Φ204Φ184Φ204Φ204Φ204Φ204Φ20实配面积(mm2)12571257101812571257125712571257ρ%0.630.630.510.630.631.211.211.21六层截面Ⅰ—ⅠⅠ—ⅠⅡ—ⅡⅢ—ⅢⅢ—ⅢⅣ—ⅣⅣ—ⅣⅤ—ⅤM()-146.310.00127.17-129.432.38-81.2819.7454.26b×h0(mm2)300×665250×415()33.3534.3716.7M0()-112.9823.35127.1795.041.9964.583.0454.26()84.7417.5195.3871.281.5048.442.2840.700.0450.0090.0060.0380.00080.0790.0040.0240.0460.0090.0060.0390.00080.0820.0040.0240.981.001.000.981.000.961.000.99(mm2)433.487.8478.1364.67.5405.318.3330.2选筋4Φ184Φ184Φ164Φ184Φ184Φ184Φ184Φ16实配面积(mm2)101810188041018101810181018804ρ%0.510.510.400.510.510.980.980.772)梁的斜截面强度计算为了防止梁在弯曲屈服前先发生剪切破坏,截面设计时,对剪力设计进行调整如下:—剪力增大系数,对三级框架取1.1—梁的净跨,对第一层,—梁在重力荷载作用下,按简支梁分析的梁端截面剪力设计值,89 —分别为梁左、右端顺时针方向和逆时针方向截面组合弯矩值,由表8-1,查得。AB跨:顺时针方向逆时针方向BC跨:顺时针方向逆时针方向计算中取顺时针或逆时针方向中较大者。AB跨:BC跨:考虑承载力抗震调整系数调整后的剪力值大于组合表中的静力组合的剪力值,故按调整后的剪力值进行斜截面计算。89 梁的斜截面强度计算见下表表9-3表9-3框架梁箍筋数量计算表Tab9-3Framegirderstirrupquantitycalculator(一层)截面支座A右支座B左支座B右设计剪力140.97141.94187.19119.8120.65159.11调整后剪力204.28204.28207.35173.64173.64176.25300×665300×665250×415箍筋直径肢数(n)101101101箍筋间距1001001000.3080.3080.9740.340.340.400.160.160.16(二层)截面支座A右支座B左支座B右设计剪力140.97141.94187.19119.8120.65159.11调整后剪力204.28204.28207.35173.64173.64176.2589 300×665300×665250×415续表9-3箍筋直径肢数(n)101101101箍筋间距1001001000.3080.3080.9740.340.340.400.160.160.16(六层)截面支座A右支座B左支座B右设计剪力111.18114.5755.6797.3897.3847.32调整后剪力156.87156.8789.59133.34133.3476.15300×665300×665250×415箍筋直径肢数(n)10110110189 箍筋间距1001001000.080.080.127续表9-30.340.340.400.160.160.169.3框架柱截面设计以第一、二层A,B柱为例,对Ⅰ—Ⅰ,Ⅱ—Ⅱ,Ⅲ—Ⅲ截面进行设计。砼强度等级C30,,,纵筋为HRB335,,箍筋为HPB235,。1)轴压比验算剪跨比宜大于2;本结构框架抗震等级为三级,轴压比应小于0.9;由A、B柱内力组合表8-2、8-3、8-4、8-5查得;89 均满足轴压比限值得要求;2)正截面承载力的计算框架结构的变形能力与框架的破坏机制密切相关,一般框架梁的延性远大于柱,梁先屈服可能使整个框架体系有较大的内力重分布和能量消耗能力,极限层间位移增大,抗震性能较好,若柱形成了塑性铰,则会伴随产生极大的层间位移,危及结构承受垂直荷载的能力并可能使结构成为机动体系。因此,在框架设计中,应体现“强柱弱梁”即一、二、三级框架的梁柱节点处除框架支撑最上层的柱上端,框架顶层和柱轴压比小于0.15外,柱端弯矩设计值应符合:(为强柱系数,一级框架取1.5,二级框架取1.2,三级框架为1.1)本设计为三级框架故:地震往复作用,两个方向的弯矩设计均满足要求,当柱考虑顺时针弯矩时,梁应考虑反时针方向弯矩,反之亦然。若采用对称配筋,可取两组中较大者计算配筋。由于框架的变形能力。同时伴随着框架梁铰的出现。由于塑性内力重分布底层柱的反弯点具有较大的不确定性。因此,对三级框架底层柱考虑1.15的弯矩增大系数。第一层梁与A柱节点的梁端弯矩值由内力组合表8-1查得::左震右震取大值第一层梁与A柱节点的柱端弯矩值由内力组合表8-2、8-3查得::左震右震梁端取右震,也取右震:取将与的差值按柱的弹性分析弯矩值之比分配给节点上下柱端(即Ⅰ—Ⅰ,89 Ⅱ—Ⅱ截面)对底层柱底的弯矩设计值考虑增大系数1.15根据A柱内力组合表8-2、8-3,选择最不利内力,并考虑上述各种调整及承载力抗震调整系数后,各截面控制内力如下:Ⅰ—Ⅰ截面:①②Ⅱ—Ⅱ截面:①②Ⅲ—Ⅲ截面:①②第一层梁与B柱节点的梁端弯矩值由内力组合表8-1查得::左震右震取大值第一层梁与B柱节点的柱端弯矩值由内力组合表8-4、8-5查得:89 :左震右震梁端取右震,也取右震:取将与的差值按柱的弹性分析弯矩值之比分配给节点上下柱端(即Ⅰ—Ⅰ,Ⅱ—Ⅱ截面)对底层柱底的弯矩设计值考虑增大系数1.15根据B柱内力组合表8-4、8-5,选择最不利内力,并考虑上述各种调整及承载力抗震调整系数后,各截面控制内力如下:Ⅰ—Ⅰ截面:①②Ⅱ—Ⅱ截面:①②Ⅲ—Ⅲ截面:①89 ②截面采用对称配筋,具体配筋计算见表9-2、表9-3,表中,当时,取,当时,取;(大偏心受压)(小偏心受压)(大偏心受压)(小偏心受压)柱正截面受压承载力计算见表9-489 表9-4框架柱配筋(A柱)Table9-4framecolumnreinforcement层次截面ξ类型(mm2)实配钢筋6柱顶600600100.98231.350.048大偏心324.7418(1018)0.30%0.91%1.23208.520.043小偏心构造配筋93.77380.280.079大偏心-70.9柱底-63.89401.880.084大偏心150.920.56239.700.050小偏心构造配筋62.68427.050.089大偏心193.65柱顶60060095.72499.630.104大偏心-83.0418(1018)0.30%0.91%-34.42437.290.091大偏心256.846.82768.890.160小偏心构造配筋柱底68.30530.820.110大偏心320.31.77468.470.098大偏心构造配筋-53.16815.670.170小偏心构造配筋4柱顶600600121.18826.340.172大偏心322.2418(1018)0.30%0.91%-43.12703.050.146小偏心构造配筋53.161157.320.241小偏心构造配筋柱底底-106.24859.160.179大偏心286.528.18736.320.153小偏心构造配筋-53.161204.100.251小偏心构造配筋3柱顶600600134.581126.960.235大偏心213.3420(1257)0.37%1.12%-56.52932.450.194小偏心构造配筋53.161545.750.322小偏心构造配筋柱底-116.661160.230.241大偏心198.639.70965.710.201小偏心构造配筋-52.411592.530.331小偏心构造配筋2柱顶600600125.611430.260.298大偏心226.3420(1257)0.37%1.12%-45.911159.200.241小偏心构造配筋54.281934.210.403小偏心构造配筋-153.071463.520.305大偏心234.889 柱底56.551192.460.248小偏心构造配筋-65.741980.980.412小偏心构造配筋续表9-41柱顶600600118.001737.010.362小偏心构造配筋420(1257)0.37%1.12%-66.731382.050.288小偏心构造配筋34.922322.330.483小偏心构造配筋柱底-238.711779.300.370大偏心218.4211.911424.340.296大偏心230.2-17.462381.800.496小偏心构造配筋表9-5框架柱配筋(B柱)Table9-5framecolumnreinforcement层次截面ξ类型(mm2)实配钢筋6柱顶600600-123.47214.970.045大偏心491.7418(1018)0.30%0.91%-123.47214.970.045大偏心491.7-74.64431.070.090大偏心122.5柱底77.59246.160.051大偏心154.277.59246.160.051大偏心154.252.21477.850.099小偏心构造配筋5柱顶600600-156.40483.240.101大偏心427.8418(1018)0.30%0.91%-156.40483.240.101大偏心427.8-40.59885.560.184小偏心构造配筋柱底135.33516.510.107大偏心253.1135.33516.510.107大偏心253.144.27932.340.194小偏心构造配筋4柱顶600600-188.31712.820.148大偏心366.3418(1018)0.30%0.91%-188.31712.820.148大偏心366.3-44.271340.230.279小偏心构造配筋柱底底167.17746.080.155大偏心200.8167.17746.080.155大偏心200.844.271387.010.289小偏心构造配筋3600600-201.42931.240.194大偏心268.74200.37%1.12%89 柱顶(1257)-201.42931.240.194大偏心268.731.921803.500.375小偏心构造配筋柱底201.10964.510.201大偏心159.4201.10964.510.201大偏心159.4-32.331845.080.384小偏心构造配筋续表9-52柱顶600600-218.381131.630.236大偏心144.1420(1257)0.37%1.12%-218.381131.630.236大偏心144.148.302292.260.477小偏心构造配筋柱底224.221164.900.242大偏心199.1224.221164.900.242大偏心199.1-40.672333.840.486小偏心构造配筋1柱顶600600-179.481340.210.279大偏心386.4420(1257)0.37%1.12%-179.481340.210.279大偏心386.460.812783.170.579小偏心构造配筋柱底282.731382.500.288大偏心842.6282.731382.500.288大偏心842.6-131.402836.040.590小偏心构造配筋3)斜截面承载力计算以第一层柱为例,剪力设计值按下式调整:式中:—柱净高;,—分别为柱上下端顺时针或反时针方向截面组合的弯矩设计值,取调整后的弯矩值,一般层应满足,底层柱底应考虑1.15的弯矩增大系数。由正截面计算中第Ⅱ-Ⅱ、Ⅲ-Ⅲ截面的控制内力得:即=1.1×89 故满足截面要求。根据规范规定;计算斜截面抗震受剪承载力时轴向力考虑地震作用组合的轴向压力设计值和中的较小者。故取此柱的剪跨比柱箍筋选用HPB235级则同时,根据《混凝土结构设计规范》,柱端加密区箍筋应满足最小体积配筋率的要求,由前面计算可得B柱的轴压比,柱混凝土强度等级为,故混凝土轴心抗压强度设计值按取,即;根据《混凝土结构设计规范》表11.4.17查得,则最小体积配筋率柱端加密区箍筋选用4肢计算得。满足要求。柱端箍筋加密区长度根据规范要求确定为1300mm。规范规定非加密区箍筋的体积配筋率不宜小于加密区配筋率的一半;对于三级抗震等级,箍筋间距不应大于15d,故非加密区箍筋选用4肢,满足要求。表9-6框架柱箍筋数量表Tab9-6Frametyingtendonscheduleofquantities89 柱层次bmmmmVKN0.2fβcbh0KNN(km)0.3fcA(KN)实配箍筋(ρv%)加密区非加密区A柱660056064.32960.96>V308.471544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)560056068.16960.96>V666.181544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)460056088.60960.96>V1032.931544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)360056097.88960.96>V1408.721544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)2600560108.57960.96>V1787.821544.4<00.52%4φ8@100(0.74)4φ8@200(0.37)1600560108.29960.96>V2171.261544.4<00.61%4φ10@100(1.16)4φ10@200(0.5)B柱660056083.55960.96>V286.631544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)5600560113.65960.96>V604.061544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)4600560138.49960.96>V891.021544.4<00.48%4φ8@100(0.74)4φ8@200(0.37)3600560156.82960.96>V1164.051544.4<00.52%4φ8@100(0.74)4φ8@200(0.37)2600560172.43960.96>V1414.541544.4<00.64%4φ8@100(0.74)4φ8@200(0.37)1600560131.45960.96>V1340.211544.4<00.80%4φ10@100(1.16)4φ10@200(0.5)89 10.板设计计算10.1设计资料按受力特点,混凝土楼盖中的周边支承可分为单向板和双向板两类,只在一个方向弯曲或主要在一个方向弯曲的板,称为单向板,在两个方向弯曲且不能忽略任一方向弯曲的板称为双向板。板按考虑塑性内力重分布方法。取1m宽板为计算单元。混凝土采用,,钢筋采用HPB235,10.2楼面板楼面板平面布置见图10-1:图10-1楼板平面布置图10.2.1A-F区格板的计算a.荷载设计值1.活荷载旅馆过道89 浴室、厕所2.恒荷载b.计算跨度板厚h=100mm,,,(1)内跨为轴线间间距(2)边跨各区格板计算跨度见表10-1C.弯矩计算跨中最大正弯矩发生在活荷载为棋盘式布置时,它可以简化为当内支座固支时作用下的跨中弯矩值与当内支座铰支时作用下的跨中弯矩值两者之和。支座最大负弯矩可近似按活荷载满布求得,即内支座固支时作用下的支座弯矩。在本设计中,楼盖边梁对板的作用是固定支座。所有区格板按其位置与尺寸分为六类,其中按双向板计算,按单向板计算。计算弯矩时,考虑泊松比的影响取;各区格板的弯矩计算列于表10-1。d.截面设计截面有效高度,选用的钢筋做为受力主筋,则(短跨)方向跨中截面的顶层板的弯矩计算取;;取;89 支座截面处均为80截面弯矩设计值;该板四周与梁整浇,故弯矩设计值应按如下折减:1、A区格不予折减;2、B区格的跨中截面与B—E支座截面折减;3、C区格的跨中截面与C—D支座截面折减;4、D区格的跨中截面与D—E支座截面折减;5、E区格的跨中截面与E—E支座截面折减;计算配筋量时,取内力臂系数截面配筋计算结果及实际配筋列与表10-2;表10-1Table10-2区格DF2.14.23.6+0.3=3.97.20.50.580.040.05180.00380.0114-0.0829-0.1100-0.0570-0.078389 表10-2按弹性理论设计的截面配筋Table10-2designedbyelastictheoryreinforcementsection截面配筋实有跨中区格方向801.95122φ8@200251方向700.5439φ8@200251区格方向807.97499Φ10@150524方向703.29235.6φ8@150335支座支座-2.17-2.17136φ8@200251D-E-2.06-2.06130φ8@200251边支座(方向)-5.42-5.42340Φ10@200393边支座(方向)-4.95-4.95310Φ10@20039310.2.2A,B,C,E板的计算(按考虑塑性内力重分布的方法计算)a.板的计算跨度及荷载A板;B板;C板;E板;由上知;因此按单向板计算活荷载恒荷载89 a.计算截面的弯矩设计值及配筋表10-3按弹性理论设计的截面配筋Table10-3designedbyelastictheoryreinforcementsection截面A区格板B区格板C区格板E区格板支座跨中支座跨中支座跨中支座跨中计算跨度3.33.33.33.31.81.81.81.8弯矩系数弯矩M()-5.68.2-6.45.6-1.672.43-1.911.670.0610.090-0.0700.0610.0180.027-0.0210.0180.9690.9530.9640.9690.9910.9860.9890.991343512395343100147115100配筋10@20010@15010@15010@2008@2008@2008@2008@200实配钢筋面积393524524393251251251251注;A板边支座,C板边支座,A-B支座,B-B支座,E-E支座按构造配筋,都选用钢筋。89 10.3屋面板屋面板的平面布置图,有关尺寸及计算简图同楼面板10.3.1A-F区格板的计算a.荷载设计值1.活荷载旅馆过道浴室、厕所2.屋面均布恒荷载b.计算跨度板厚h=120mm,,,(1)内跨为轴线间间距(2)边跨各区格板计算跨度见表10-4C.弯矩计算同楼面板计算d.截面设计截面有效高度,选用的钢筋做为受力主筋,则(短跨)方向跨中截面的顶层板的弯矩计算89 取;;取;支座截面处均为100截面弯矩设计值;该板四周与梁整浇,故弯矩设计值应按如下折减:1、A区格不予折减;2、B区格的跨中截面与B—E支座截面折减;3、C区格的跨中截面与C—D支座截面折减;4、D区格的跨中截面与D—E支座截面折减;5、E区格的跨中截面与E—E支座截面折减;计算配筋量时,取内力臂系数截面配筋计算结果及实际配筋列与表10-4;表10-4Table10-4区格DF2.14.23.6+0.3=3.97.20.50.580.040.05180.00380.0114-0.0829-0.1100-0.0570-0.078389 表10-5按弹性理论设计的截面配筋Table10-5designedbyelastictheoryreinforcementsection截面配筋实有跨中区格方向1002012106.3φ8@200251方向900.6636.8φ8@200251区格方向10010.42522.3Φ10@130604方向904.16231.7Φ10@200393支座支座100-3.40170φ8@200251D-E100-2.99150φ8@200251边支座(方向)100-7.44415Φ10@150523边支座(方向)100-6.80341Φ10@20039310.3.2A,B,C,E板的计算(按考虑塑性内力重分布的方法计算)a.板的计算跨度及荷载A板;B板;C板;E板;由上知;因此按单向板计算活荷载恒荷载89 b.计算截面的弯矩设计值及配筋表10-6按弹性理论设计的截面配筋Table10-6designedbyelastictheoryreinforcementsection89 截面A区格板B区格板C区格板E区格板支座跨中支座跨中支座跨中支座跨中计算跨度3.33.33.33.31.81.81.81.8弯矩系数弯矩M()-6.649.66-7.596.64-1.982.87-2.261.980.0460.0680.0530.0460.0140.020.0160.0140.9760.9650.9730.9760.9930.990.9920.9933244773713249513810895配筋10@15010@15010@15010@1508@2008@2008@2008@200实配钢筋面积523523523523251251251251注;A板边支座,C板边支座,A-B支座,B-B支座,E-E支座按构造配筋,都选用钢筋。11基础设计设计基础的荷载包括:①89 框架柱传来的弯矩,轴力和剪力(可取设计底层柱的相应控制内力)②基础类型的选取由于本建筑物柱距为7200mm,因而采用柱下独立基础在框架柱内力计算中所选的为④轴。④轴的一榀框架,该榀框架六根柱子,柱距分别为7800mm,2100mm,7800mm,2100mm,7800mm,因而将柱分别做成柱下独立基础。11.1荷载设计值11.1.1外柱基础承受的上部荷载框架柱A传来:;A柱基础承受的由外墙传来的重力荷载为;390mm厚混凝土空心小砌块外墙;的铝合金窗;底板传来荷载;基础拉梁;合计;11.1.2内柱基础承受的上部荷载框架柱B传来:该工程框架层数不多,地基土较均匀且柱距较大,可选择独立柱基础,据地质报告,基础埋深需在杂填土以下。取基础混凝土的强度等级为C30,;。钢筋采用HRB335,,垫层100mm厚,C10素砼,每边比基础宽出100㎜11.2外柱独立基础的计算11.2.1初步确定基底尺寸(1)选择基础埋深,(大于建筑物高度的1/15)(2)地基承载力的深度修正根据资料提供:,、重度计算:89 杂填土:粘土:粗砂:则基础底面以上土的重度取平均重度;先假设基础宽度不大于,地基承载力特征值为:(3)基础底面尺度先按中心荷载作用下计算基底面积:但考虑到偏心荷载作用应力分布不均匀,故将计算出的基底面积增大20%~40%,取1.2选用矩形即宽×长:,满足要求:地基承载力不必对宽度进行修正:11.2.2地基承载力验算作用于基底中心的弯矩,轴力分别为:89 故承受力满足要求,安全。11.2.3基础剖面尺寸的确定采用台阶式独立柱基础。构造要求:台阶宽高比。阶梯形每阶高度宜为300mm~500mm,当时,采用三阶,阶梯的水平宽度和阶高尺寸均为100mm的倍数。基底垫层在底板下浇筑一层素混凝土,垫层的厚度为100mm,两边伸出基础底板宽度为100mm。初步选择基础高度,从下至上分450mm,450mm两个台阶。h0=865mm,h1=400mm。11.2.4土的净反力Fl的计算基底净反力:;(不包括基础及回填土自重)11.2.5基础底面配筋计算基础在上部结构传来荷载与土壤净反力的共同作用,可把它倒过来,视为一均布荷载作用下支承于柱上的悬臂板。其弯矩及配筋计算柱边Ⅰ-Ⅰ截面弯矩为:89 Ⅰ-Ⅰ截面选24φ16Ⅱ-Ⅱ截面选14φ1611.3中柱独立基础的计算因为相邻两基础间距较小,相互干扰,故中柱采用双柱联合基础。11.3.1确定基础底面尺寸(1)选择基础埋深(同外柱),。(2)地基承载力对深度修正(同外柱)(3)基础底面尺度先按中心荷载作用下计算基底面积:取,须修正宽度;89 11.3.2地基承载力验算基础回填土重;作用于基底中心的弯矩,轴力分别为:故承受力满足要求11.3.3基础剖面尺寸的确定采用台阶式独立柱基础。构造要求:台阶宽高比。阶梯形每阶高度宜为300mm~500mm,当时,采用三阶,阶梯的水平宽度和阶高尺寸均为100mm的倍数。基底垫层在底板下浇筑一层素混凝土,垫层的厚度为100mm,两边伸出基础底板宽度为100mm。初步选择基础高度,从下至上分450mm,450mm两个台阶。h0=865mm,h1=400mm。11.3.4冲切验算土壤净反力的计算:基底净反力:(不包括柱基础基回填土自重)土壤净反力计算:89 11.3.5基础底面配筋计算基础在上部结构传来荷载与土壤净反力的共同作用,可把它倒过来,视为一均布荷载作用下支承于柱上的悬臂板。柱边Ⅰ-Ⅰ截面弯矩为:Ⅰ-Ⅰ截面选Ⅱ-Ⅱ截面选11.4基础梁用C30混凝土,HRB335级钢筋,梁截面取梁计算跨度:墙体计算高度:墙梁计算高度:89 内力臂系数:弯矩分配系数:(非承重梁)按大偏心受拉配筋:B柱:所以,按构造配筋:纵筋:318箍筋:Φ8@150。其他梁与此梁计算方法相同。参考文献[1]《建筑制图标准》GB50104-2010.北京:中国建筑工业出版社,2010[2]《混凝土结构设计规范》GB50010-2010.北京:中国建筑工业出版社,2010[3]《建筑结构荷载规范》GB50009-2001.北京:中国建筑工业出版社,2001[4]《建筑抗震设计规范》GB50011-2010.北京:中国建筑工业出版社,2010[5]《建筑设计防火规范》GB50016-2006.北京:中国建筑工业出版社,2010[6]《建筑地基基础设计规范》GB5007-2002.北京:中国建筑工业出版社,2002[7]《建筑结构可靠度设计统一标准》GB50068-2001.北京:中国建筑工业出版社,2001[8]《民用建筑设计通则》GB50352-2005.北京:中国建筑工业出版社,2005[9]《旅馆建筑设计规范》JGJ62-1990.北京:中国建筑工业出版社,1990[10]《结构力学》龙驭球.北京:高等教育出版社,2006[11]《房屋建筑学》李必瑜.武汉:汉理工大学出版社,200089 [12]《混凝土结构设计》朱彦鹏.上海:同济大学出版,2004[13]《抗震结构抗震与防灾》刘海卿.北京:高等教育出版社,2010[14]《土力学与地基基础》陈希哲.北京:清华大学出版社,2003[15]《土木工程毕业设计指导》梁兴文.北京:科学出版社,199689

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭