实时时钟模块的电源开关电路解说

实时时钟模块的电源开关电路解说

ID:34463036

大小:410.50 KB

页数:4页

时间:2019-03-06

实时时钟模块的电源开关电路解说_第1页
实时时钟模块的电源开关电路解说_第2页
实时时钟模块的电源开关电路解说_第3页
实时时钟模块的电源开关电路解说_第4页
资源描述:

《实时时钟模块的电源开关电路解说》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、www.sekorm.com实时时钟模块的电源开关电路解说通常,实时时钟必须随石英晶体振荡频率而随时更新日历数据和时间数据。为此,需要使用备用电池保护数据以应对主电源的切断及停电。在这种电池备用电路中,主电源和电池的转换需在适当时间内进行。部分系统为此采用了专用的电源管理LSI,而大部分系统为追求简便则采用由两只二极管构成的或门电路【图1】。在此解说这种二极管或门电路特有的技术性课题。电池能量损耗考虑二极管所造成的损耗时可列举出两大特性。其一是正向压降(VF)特性,另一项是反向泄漏电流(IR)特性。一般情况下所产生的VF为0.6V左右,当主电源为3.0V时,通过二极

2、管后的电压为2.4V。这种电压下降意味着向充电电池和双电层电容器(以下称为“电容器”)等充电的电压下降。结果有可能导致电池充电电压下降而缩短其寿命。由于上述原因,不少技术人员选择使用VF较小的肖特基势垒二极管。肖特基势垒二极管的结构特征导致其VF量小,各家公司均推出了这项产品。但是,通常VF和IR之间为二律背反的关系,即VF小的二极管的IR大。IR的增大将在切断主电源时引发问题。切断主电源后,泄漏电流从电池流向电压为0V的电源。这正是被称为反向泄漏的理由(图2)。而且,IR具有温度特性,温度越高越呈现二次方增长的趋势(表1)。由于上述背景,设计人员需要根据所开发产品

3、的温度规格范围并考虑到VF和IR选择最为均衡的二极管,但实际上很难找到所有条件均与系统要求相匹配的二极管(图2)。时钟数据受损风险在前一项中已经说明了因二极管的VF而使CPU和实时时钟的电源电压之间出现电位差。若CPU在这种状态下访问实时时钟,来自CPU的输入电压有可能超过实时时钟的额定输入电压。超过额定数值后,一般的CMOS工艺半导体产品不少会出现内部寄存器位数无规则变化的现象。额定输入除了适用于输入接口以外,时钟输出的使能输入以及CMOS时钟输出端子的上拉对象也可能适用同样的额定输入电压,因此需要进行充分的确认。CMOS半导体产品的输入最大额定值一般在VDD+0

4、.3V以下。这时需把二极管的VF控制在0.3V4/4www.sekorm.com以内,所以必然将选择使用肖特基势垒二极管。这就产生了前项所提到的IR的问题(图2)。图1:通常使用二极管或门电路的电源开关电路图2:切断主电源时因IR所造成的泄漏(虛线)4/4www.sekorm.comS表1:IR特性例RX-8035/435中搭载的电源开关电路图3:RX-8035/435中搭载的电源开关电路4/4www.sekorm.com本电源开关电路是针对上述二极管或门电源开关电路的设计风险而提供的解决方案。开关元件中没有使用晶体管或二极管,而采用了PMOS的开关。VF被控制在0

5、.12V以内,通常状态下的IR在30nA以下。实时时钟以外必须准备的电子部品仅为连接VDD和VOUT端子的0.1μF旁路电容器共计两只而已。以下介绍原电池、二次电池和双电层电容器的连接方法。图4:绍原电池、二次电池和双电层电容器的连接方法4/4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。