欢迎来到天天文库
浏览记录
ID:39786619
大小:827.00 KB
页数:6页
时间:2019-07-11
《数学北师大版七年级下册2.1两条直线的位置关系(第2课时).1两条直线的位置关系(二)教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二章相交线与平行线2.1两条直线的位置关系(第2课时)银川回中张淑红课时安排说明:《两条直线的位置关系》共分两课时,我们在第一课时已经学习了在同一平面内两条直线的位置关系、对顶角、余角、补角的定义及其性质;今天我们将要学习第二课时,主要内容是掌握垂直的定义及其表示方法,会借助有关工具画垂线,掌握垂线的有关性质并会简单应用。一、学生起点分析学生的知识技能基础:学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识;上一节课又进一步学习了两直线的位置关系、两角互补、互余
2、等概念,这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。学生活动经验基础:在上一节课,通过引导学生走进生活,从身边熟悉的情境出发,使学生经历了从现实生活中抽象出数学模型的过程;让学生通过直观和大量的操作活动,引导学生积极动手、动口、动脑来进行归纳整理;鉴于学生已有充分的知识储备,本课时将继续延续还课堂于学生,在开放的前提下,让学生经历动手画图(或者操作)、合作交流的过程,给学生一个充分发表见解的舞台,激发学生的创新精神,提高学生的自信力,打造高效课堂!二、教学任务分析根据七年学生好奇的心
3、理,首先应引导学生走进现实世界,用一双慧眼去发现有关垂直的情境,借助视觉思维的直观性,复习旧知识,提炼新知识,让学生在主动“探索发现”的过程中增进对数学知识的理解,激发他们的创造力,在无形中培养学生的推理能力!根据学生已经具备的知识储备和能力,特制定目标如下:1.知识与技能:(1)会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线。(2)通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用。(3)初步尝试进行简单的推理。2.过程与方法:经历从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,
4、进一步发展学生的空间观念、推理能力和有条理表达的能力。善于举一反三,学会运用类比、数形结合等思想方法解决新知识。3.情感与态度:激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性。三、教学过程设计本课时我遵循“开放”的原则,在把握教材编写意图的基础上,进行了再创造。通过重组教材,恰当地创设情境,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致
5、用,步步为营;第四环节:综合应用,开阔视野;第五环节:学有所思,反馈巩固;第六环节:布置作业,能力延伸。第一环节走进生活引入课题问题:观察下面三个图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?归纳总结两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线。它们的交点叫做垂足。通常用“⊥”表示两直线垂直。2.1—12.1—2记作l⊥m,垂足为点O.记作AB⊥CD,垂足为点O.活动目的:数学来源于生活,通过课前开放,引导学生从身边熟悉
6、的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中大量存在特殊的相交线——垂直,在比较中发现发现新知,加深了学生对垂直和平行的感性认识,感受垂直“无处不在”;使学生充分体验到现实世界的美来源于数学的美,在美的享受中进入新知识的殿堂。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中抽象出有价值的数学模型,然后利用现代化教学手段加强直观教学,在展示学生作品中进行师生互动、生生互动,激发学生的学习热情,调动学生的参与意识。第二环节动手实践,探究新知你能画出两条互相垂直的直线吗?你有
7、哪些方法?小组交流,相互点评用自己的语言描述你的画法动手画一画1:工具1:你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?工具2:如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?说出你的画法和理由.工具3:你能用折纸的方法折出互相垂直的直线吗,试试看吧!请说明理由。活动目的:“条条大路通罗马”,相同的问题可以借助不同的工具不同的方法来解决,让学生的思维得到充分发散,引导学生透过现象看本质。通过画、折等活动,进一步丰富对两条直线互相垂直的认识,掌握有关的符号表示。课改理念之一就是改变学生被动的学习方
8、式,让学生积极主动的投身于“做数学”中。本环节的设置,将问题更加形象生动的呈现在学生面前,让学生在经历思考、实践、猜想,动手验证等过程,不仅加深对“垂直”的理解,而且感受到“做数学“的乐趣,从而享受到成功的喜悦,形成探索新知的内驱力!而学生在相互交流探讨中,可以相互点拨,顺其自然的掌握新知识。对于第2问的最后一种画法,必要时给出示
此文档下载收益归作者所有