Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown

Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown

ID:81816524

大小:3.66 MB

页数:7页

时间:2023-07-20

上传者:U-14522
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第1页
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第2页
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第3页
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第4页
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第5页
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第6页
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第7页
资源描述:

《Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterBandgapTuninginMolecularAlloyCrystalsFormedbyWeakChalcogenInteractionsSajeshP.Thomas,ReshmiThomas,ThomasBjørnE.Grønbech,MartinBondesgaard,ArefH.Mamakhel,VictoriaBirkedal,andBoB.Iversen*CiteThis:J.Phys.Chem.Lett.2021,12,3059−3065ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Wedemonstratesystematictuningintheopticalbandgapsofmolecularcrystalsachievedbythegenerationofmolecularalloys/solidsolutionsofaseriesofdiphenyldichalcogenidescharacterizedbyweakchalcogenbondinginteractionsinvolvingS,Se,andTeatoms.Despitethevarietyinchalcogenbondinginteractionsfoundinthisseriesofdichalcogenidecrystals,theyshowisostructuralinteractiontopologies,enablingtheformationofsolidsolutions.ThealloycrystalsexhibitVegard’slaw-liketrendsofvariationintheirunitcelldimensionsandanonlineartrendforthevariationinopticalbandgapswithrespecttotheircompositions.Energy-dispersiveX-rayandspatiallyresolvedRamanspectroscopicstudiesindicatesignificanthomogeneityinthedomainstructureofthesolidsolutions.Quantumperiodiccalculationsoftheprojecteddensityofstatesprovideinsightsintothebandgaptuningintermsofthemixingofstatesinthealloycrystalphases.ttemptstotunematerialpropertiesviaalloyformationtransferinteractionswherethestoichiometryofthedonororA14,15datebacktothebronzeage.Generatinghigh-entropyacceptormoleculesisvaried,and(III)alloysof1,2metallicalloysorsolidsolutionsofknownstructuraltypesofisostructuralcompoundswithahighdegreeofshapeandinorganiccompoundsisanefficientwaytoalteroptical,16−22sizesimilarity.Recently,Desirajuetal.demonstratedthe3−6electronic,andcatalyticproperties.Theformationofsolidmechanicalhardeningofsolidsolutionsformedbytautomerssolutionsofinorganicmaterialsisquitecommon,asitis23ofthedrugomeprazole.Infunctionalmolecularmaterials,facilitatedbysimilarityinatomic/ionicradii,valency,andalloyscanhavepromisingapplicationsinbandgapengineeringDownloadedviaBUTLERUNIVonMay16,2021at08:50:29(UTC).oxidationstatesoftheatomsorionsthatcanoccupysimilaroforganicsemiconductorsandphotovoltaiccrystals.24crystallographicpositions.However,examplesoforganicsolidCompositionvariationwithrespecttotheionicspeciesin7,8solutionsthatformmolecularcrystalsareratherrare.Theorganic−inorganichybridperovskitestructures,metal−organicfactthatmoleculeshaverathercomplexandirregularshapesframeworks,andsaltshavebeenreportedtoshowtuninginandhighlydirectionalintermolecularinteractionsmakesittheiroptical/electricalproperties.25,26However,studiesthatSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.difficulttosubstituteamoleculeincrystalbyachemicallydemonstratesystematictuningintheopticalbandgapsindifferentmolecule.Crystalengineeringapproachestodesignmolecularsolidsolutionswithdetailedcrystallographicstudiesmulticomponentcocrystalshavebeenshowntobeeffectiveinonthestructure−propertyrelationsareraretoourknowledge.modulatingthechemicalandphysicalpropertiesofmolecularSolidsolutionsoftypeIaredistinctinthesensethattheylacksolidsrelevanttopharmaceuticalchemistryandmaterialdirectinteractionsbetweentheguestmoleculesofwhichthe9science.Whileacocrystalhasadefinitestoichiometryofstoichiometriesaretuned,makingitdifficultfortheelectronicconstituentmolecules,continuouslyvaryingstoichiometriesstatesofthecomponentstomix.FortypeIIcrystals,althougharepossibleforasolidsolution.Beingabletovarythethedirectinteractionbetweenthevaryingmolecularstoichiometryofmolecularcomponentsincrystalsmightcomponentsarelimited,thestrongπ···πstackingcanleadtoprovidemeanstofine-tunetheopticalandelectronicpropertiesofmolecularmaterialswithawiderangeofapplications.MostexamplesoforganicsolidsolutionsareReceived:February25,2021formedbyoneofthefollowingstructuraltypes(seeFigure1):Accepted:March15,2021(I)porousorhost−guestcrystalstructureswithvaryingPublished:March19,2021stoichiometryofmolecules/atomsconstitutingthehost10−13frameworksortheguests,(II)donor−acceptortypemolecularcomplexesformedbystrongπ···πstackingorcharge©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpclett.1c006143059J.Phys.Chem.Lett.2021,12,3059−3065

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettereachother.Thecellparametersincreasegraduallyfromthesulfuranalogue(dpdS)tothetelluriumanalogue(dpdTe).Theirunitcellvolumesareinthefollowingorder:Vcell(dpdS)=1079.8(2)Å3

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterqualitysinglecrystalsobtainedforaseriesofdifferenttuningintheopticalandelectronicpropertiesaswell,similarstoichiometriesfordpdS−dpdSesolidsolutions(dpdSxSe1−x)tothetrendsreportedformanyinorganicsolidsolutionenabledtheaccuratedeterminationoftheirunitcellsemiconductors.ThephysicalevidencefortheopticalbandgapparametersandcompositionsbyusingX-raydatacollectedtuningindpdSxSe1−xanddpdSexTe1−xsolidsolutionwasat280K.Thecompositionsofindividualmolecularimpliedbythecolorchangesinthesecrystals.ThecrystalsofcomponentsweredeterminedbycarefulcrystallographicdpdS,dpdSe,anddpdTearecolorless,yellow,anddarkred,occupancyrefinementsofSversusSeatomsinthesecrystalrespectively.Interestingly,thecrystalsofthemolecularsolidstructures.TwodifferentstrategieswereadoptedforthesolutionsdpdSxSe1−xexhibitedpaleyellowcolor,andthoseofoccupancyrefinement(i)keepingtheatomicdisplacementdpdSexTe1−xshowedorangecolor(Figure3a−c).Thisimpliesparameters(ADPs)ofbothSandSeatomsconstrainedtobesamewhilerefiningtheiroccupanciesand(ii)theADPsofbothSandSeatomswerefixedtothevaluesfromtheparentcrystalstructuresofdpdSanddpdSe(seetheSupportingInformationfortherefinementdetails).Theoccupancyvalues(therebythecomposition)obtainedbyboththesemethodsdifferedbyaround4−8%,andthevaluesfromtherefinementmethod(i)wereusedforfurtheranalysisanddiscussionhere,asitresultedinsignificantlybetteragreementparametersintherefinement(R-factor,residualelectrondensity,etc.)ascomparedtomethod(ii).Also,ouranalysisrevealedthatdifferentsinglecrystalsfromthesamecrystallizationexperi-mentexhibitedvariationsincomposition(upto9%variationfor1:1alloys,andameanabsolutedeviationofaround3%fromthemeancompositionvalues;seeTablesS3andS4).Weobservedasystematicvariationinthecellparametersofthesolidsolutionswithrespecttotheircomposition(Figure2a−d).Figure3.Manifestationofopticalbandgaptuninginmolecularsolidsolutionsascolorchangeincrystalsof(a)dpdSe,(c)dpdTe,and(b)thesolidsolutioncrystalofdpdSexTe1−x.(d,e)NonlineartrendobservedintheopticalbandgapsofmolecularsolidsolutionsofdpdS−SeanddpdSe−Tewiththeircompositions.thatthetuningoftheopticalbandgapsisindeedpossiblebytheformationofsolidsolutions.Itmaybenotedthatsuchagradualvariationincolorwasreportedinaccidentlyformedsolidsolutioncrystalsofcis-mer-MoOCl2(PMe3)3withtheimpuritymer-MoCl3(PMe3)3alongwithanapparentvaria-tioninMo−Obondlengths(asanartifactofcrystallographic47,48disorder).Toquantitativelyexaminethis,weanalyzedthebandgapsoftheparentcrystalsaswellasthesolidsolutionsdpdSxSe1−xanddpdSexTe1−x.TheUV−visreflectancespectraofthegroundsamplesofthecrystalsweretransformedintoTaucplotsbyusingKubelka−Munkfunctionsaspertheestablished49,50method.TheopticalbandgapsoftheparentcrystalsFigure2.SystematicvariationsofunitcellparametersinthesolidsolutionsofdpdSanddpdSeshowingVegard-liketrendswiththeexaminedinthisstudyarethefollowing:Egap(dpdS)=3.47eV,percentagecompositionofdpdSinthesolidsolutions.Egap(dpdSe)=2.76eV,andEgap(dpdTe)=2.34eV.Thebandgapsofthesolidsolutionswerefoundtobesystematicallyvaryingbetweenthevaluesoftheirparentcomponents.Inthecontextofinorganicsolids,suchavariationiswellHowever,thetrendinthisvariationwasfoundtobefarestablishedandisgivenbyVegard’slaw:a(A(1−x)Bx)=(1−x)fromlinearandmimickedanexponentiallikecurveforbotha(A)+xa(B),wherea(A)anda(B)arethelatticeparametersdpdSxSe1−xanddpdSexTe1−xsolidsolutions(Figure3d,e).Itisofthepureparentcrystals,a(A(1−x)Bx)isthatofthesolidnotablethatforthedpdSxSe1−xsolidsolutionsofcompositions45,46solutions,andxisthemolarfractionoftheconstituentB.40%and60%thebandgapvaluesare2.84and2.88eV,However,studiesofsuchtrendsformolecularsolidsolutionsrespectively,whichareclosertothebandgapvalueofdpdSe15,18arerare.RecentworksbyThomasetal.andMatzgeretal.muchlowerthantheaveragebandgapvaluesfortheparentsuggestedthatmolecularsolidsolutionscouldalsoshowcomponents(3.12eV).Asimilartrendwasobservedforthe15,18Vegard’slaw-likecorrelations,albeitwithsomeoutliers.InbandgapsofdpdSexTe1−xsolidsolutionswiththeircomposi-thisstudy,Vegard-likevariationsinthecellparametersoftions.Toourknowledge,suchasystematictrendinbandgapdpdSxSe1−xmolecularsolidsolutions(despitesmalldeviationstuningofmolecularalloyshasnotbeenreported.Ininorganicfromlinearity)pointtothepossibilityofsuchsystematicsolidsolutions,thereareexamplesofbothlinearvariationof3061https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059−3065

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter51,52Egap(suchasZnS(1−x)Sex)andnonlinearvariationssuchas53−55“bowing”(forexample,In(1−x)AlxN).IntheexamplereportedbyPeietal.,thebandgapofthesolidsolutionwasshowntobelowerthanthebandgapvaluesoftheparent27componentsasopposedtoasystematictuning.TheloweredbandgapfoundinthatexamplewasattributedtotheformationofJ-aggregatesbetweenthemolecularcomponentsinthealloymatrix.Inthequaternarycharge-transfersolidsolutionsreportedbyMatzgeretal.,thesmallandirregularchangesobservedintheopticalbandgapsofsolidsolutionswerelinkedtostrongcharge-transferinteractionbetweendonorandacceptormoleculesandthevariationintheextentofcharge15transfer.ItisinterestingtonotethatthealloysinthisstudyexhibitrelativelyweakintermolecularinteractionssuchasC−H···S,C−H···Se,C−H···Te,Se···Se,andTe···πchalcogenbonding.Hence,ourresultsindicatethatbandgaptuningcouldberealizedeveninmolecularcrystalswithsuchweakinteractionsdevoidofanystrongdonor−acceptorcharge-transferinteractionsorπ···πstacking.Toexamineifthebandgaptuninginthealloysleadtotuninginemissionproperties,wemeasuredphotoluminescence(PL)ondpdTe,dpdSe,andtheiralloycrystals.However,nosignificantPLemissioncouldbeobservedinthesolid-statesamples,possiblyduetoquenchingeffects(spectragivenintheSupportingInformation).BecauseX-raycrystalstructuresprovideusonlythespatiallyFigure4.Cartoonrepresentationsof(a)heterogeneousdomainstructurewithseparateddomainsofindividualcomponentsand(b)aaveragedpictureofthetwodifferentcomponentsinacrystal,ithighlyhomogeneousdomainstructure.(c)Electronicbandstructuresisimportanttostudythedetailsofthespatialdistributionofoftheparentcompoundswiththedensityofstatesprojectedtodomainsinsolidsolutioncrystals.Twomajorpossibilitiesofchalcogenatom(S,Se,orTe)states:thetotalDOSareaisshadedinthedistributionofthemolecularcomponentscanbeblue,andthechalcogenatomprojectionoftheDOSiscoloredconsideredasshowninFigure4:(a)aheterogeneousorange.(d)DOSplotsfordpdS0.5Se0.5anddpdSe0.5Te0.5withthedistributionwithmicrometer-sizeddomainsofindividualDOScorrespondingtoheavierchalcogenatominyellowandthesumcomponentsformingthecrystallitesofthesolidsolutionsofstatesfromboththechalcogenatomsinorange.and(b)amorehomogeneousdistributionwherethecomponentsaremixedatnanodimensionsoratthemoleculardispersiveX-rayspectroscopic(EDX)analysisofthelevel.Thedomainstructureofthesolidsolutionsisadistributionofdifferentmolecularcomponentsinsinglesignificantfactorinthecontextoftheirbandgaptuning,crystalsofdpdSxSe1−x.TheEDXspectra(withdistinctenergysinceahighlyhomogeneousmixingwouldhelpeffectivepeaksfortheelementsSandSe)weremappedonthecrystalintermolecularinteractionsbetweendifferentmolecularsurfacewithaspatialresolutionof2nm.Figures5a−cshowcomponentsinthealloyphases.TheobservedtuninginthethattheEDXspectralmapshaveSandSepeaksfromopticalbandgapsmaybeunderstoodintermsofasubmicrometerregionsonthecrystals,indicatinganearlyhomogeneousmixingofdifferentmolecularcomponents,homogeneousdomainstructure.Inaddition,wequantifiedthewhichinturnwouldimplytheoccurrenceofhetero-chalcogenpercentagecompositionofindividualcomponentsbyintegrat-bondssuchasS···SeorSe···Teinteractionsinthesolid−ingtheareaunderthespectralpeakscorrespondingtoSandsolutioncrystals.TheX-raymodelsofdpdSxSe1−xandSeseparately.dpdSexTe1−xshowedS···Sehetero-chalcogenbondingofBecausetheEDXmappinganalysiswasperformedona3.644(1)ÅandSe···TechalcogenbondinginteractionsofsinglecrystalforwhichgoodqualityX-raydiffractiondatawere3.810(1)and4.092(1)Å.Wecalculatedthebandstructuresofalreadycollected,theelementalcompositionfromEDXwasthesesolidsolutionsincomparisonwiththeparentcomparedtothevaluesfromtheSXRDoccupancyrefinementcompoundsusingtheX-raycrystalstructuresasinputsinmodels.ThedpdScompositionof59%(esd∼3.5%)obtainedperiodicquantumchemicalcalculations.TheanalysisofthefromtheEDXmapmatchedwelltheoccupancyvalueof59%projecteddensityofstates(DOS)intoelementalcontributions(e.s.d.∼1%)fromtheSXRDmodelbymethod(i).Thegoodshowedthattheenergystateslyinginthebandedges(highestagreementbetweentheresultsfromSXRD(abulkmeasure-occupiedstatesandlowestunoccupiedstates)arepredom-mentfromthesinglecrystal)andEDX(surfacemapping)inantlyfromthechalcogenatomssuchasS,Se,andTeinfurthervalidatesthehomogeneityofdomaindistributionasdpdS,dpdSe,anddpdTe,respectively(Figure4c).TheDOSwellasourX-rayoccupancymodelingstrategy.Inaddition,toplotsofthesolidsolutionsrevealthatthemixingofstatesprobeanycharacteristicspectroscopicfeaturescorrespondingindeedleadtotheshiftsintheelectronicstatesatthebandtothesolidsolutions,weperformedspatiallyresolvedRamanedgesandtheloweringofthebandgap(seetheSupportingstudiesonthesinglecrystalsofdpdSxSe1−x.ThecharacteristicInformationfordetails).TheseresultsfurtherdemonstratethatpeakscorrespondingtotheS−Sbondvibrations(541cm−1)amixingofthecomponentphasesatamicroscopiclevelisandSe−Sebondvibrations(312cm−1)inthedpdSSex1−xindeedessentialforeffectivebandgaptuning.Hence,tocrystalswerefoundtobeatthesamepositionsasintheirinvestigatethedomainstructure,weperformedenergyparentcrystals(dpdSanddpdSe).However,theratiosofpeak3062https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059−3065

4TheJournalofPhysicalChemistryLetters■pubs.acs.org/JPCLLetterASSOCIATEDCONTENT*sıSupportingInformationTheSupportingInformationisavailablefreeofchargeathttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00614.CrystallographicdatatablesanddetailsofRaman,EDX,UV−visdiffusereflectancespectroscopicmeasurements,anddetailsofcomputationalcalculations(PDF)■AUTHORINFORMATIONCorrespondingAuthorBoB.Iversen−CenterforMaterialsCrystallography,DepartmentofChemistryandiNano,AarhusUniversity,Aarhus8000,Denmark;orcid.org/0000-0002-4632-1024;Email:bo@chem.au.dkFigure5.Top:(a−c)EDXmapsofthedpdS−SesolidsolutionAuthors(59:41)highlightingregionsofdifferentelementalcontentssulfurSajeshP.Thomas−CenterforMaterialsCrystallography,(red),selenium(green),andoverlappedmapshowingnearlyDepartmentofChemistryandiNano,AarhusUniversity,homogeneousdistributionofdpdSanddpdSeinthealloycrystalAarhus8000,Denmark;orcid.org/0000-0003-3552-(scalebar=1μm).Bottom:Ramanspectralpeakscorrespondingto8625S−SandSe−SecharacteristicvibrationsindpdSanddpdSeinthedpdS−Sesolidsolutioncrystaland(e)spatialmappingofS−S/Se−ReshmiThomas−CenterforMaterialsCrystallography,SeRamanintensityratiocorrespondingtothevariationofDepartmentofChemistryandiNano,AarhusUniversity,compositionwithinasinglecrystal.Aarhus8000,DenmarkThomasBjørnE.Grønbech−CenterforMaterialsCrystallography,DepartmentofChemistryandiNano,AarhusUniversity,Aarhus8000,DenmarkintensitiescorrespondingtoS−SmodeandSe−SemodeinaMartinBondesgaard−CenterforMaterialsCrystallography,seriesofdpdSxSe1−xcrystalswerefoundtobevaryingwithDepartmentofChemistryandiNano,AarhusUniversity,respecttothecompositionx,inasystematicbutnonlinearAarhus8000,Denmarkfashion(seeFigureS11).Inaddition,thiscorrelationinArefH.Mamakhel−CenterforMaterialsCrystallography,Ramanpeakintensityratios(IS−S/ISe−Se)wasutilizedtoprobeDepartmentofChemistryandiNano,AarhusUniversity,thevariationofcompositionwithinasinglecrystal.Forthis,Aarhus8000,DenmarkthespatiallyresolvedRamanspectralmapsweretransformedVictoriaBirkedal−InterdisciplinaryNanoscienceCenterintopeakintensityratiomapsasshowninFigure5e.Thefact(iNano)andDepartmentofChemistry,AarhusUniversity,thatpeakintensityratioIS−S/ISe−SevariesinaverysmallrangeAarhus8000,Denmark;orcid.org/0000-0002-1360-suggestedthatthecompositionwithinasinglecrystalisnearly8870uniformalbeitwithsmalldifferences.Completecontactinformationisavailableat:Insummary,thesolidsolutionsdpdSxSe1−xanddpdSexTe1−xhttps://pubs.acs.org/10.1021/acs.jpclett.1c00614reportedhereestablishthatbandgaptuningispossibleeveninmolecularcrystalswhicharestabilizedbyweakinteractionsFundingsuchasS···SorSe···SechalcogenbondsanddevoidofstrongThisworkwassupportedbytheVillumFoundation.S.P.T.charge-transferinteractionsorπ···πstacking.ThedomainacknowledgesEUfundingforMarieSkłodowska-CuriestructureofthesolidsolutionsintermsofthedistributionofIndividualFellowship(Grant798633).componentsprobedbyEDXmappingsuggestedanearlyhomogeneousdistribution.Electronicbandstructurecalcu-NoteslationsrevealedhowthehomogeneousmixingofmoleculesTheauthorsdeclarenocompetingfinancialinterest.leadtomixingofstates,whichinturnleadstoloweringofthebandgaps.X-rayoccupancyrefinementstrategiesestablishedin■REFERENCESthisstudytoobtainaccuratecompositionsmaybegenerally(1)Bondesgaard,M.;Broge,N.L.N.;Mamakhel,A.;Bremholm,applicabletomodelcrystalstructuresofmolecularsolidM.;Iversen,B.B.GeneralSolvothermalSynthesisMethodforsolutions.Theoriginofthesystematic,nonlinearvariationsinCompleteSolubilityRangeBimetallicandHigh-EntropyAlloytheopticalbandgapswithcompositionsneedtobeinvestigatedNanocatalysts.Adv.Funct.Mater.2019,29,1905933.further.Ourstudysuggeststhatalloyformationmaybeapplied(2)George,E.P.;Raabe,D.;Ritchie,R.O.High-entropyalloys.Nat.toawiderrangeofmolecularcrystals,includingtheorganicRev.Mater.2019,4,515−534.optoelectronicmaterialscomposedofsulfurandselenium(3)West,A.R.SolidStateChemistryandItsApplications;JohnWileycompoundsexhibitingweakchalcogenbondsasacrystal&Sons:2014.(4)Chen,S.;Shang,R.;Wang,B.-W.;Wang,Z.-M.;Gao,S.AnA-engineeringstrategyforbandgaptuning.AlthoughthecrystalsSiteMixed-AmmoniumSolidSolutionPerovskiteSeriesofanalyzedinthisstudyshowednosignificantphotophysical[(NH2NH3)x(CH3NH3)1−x][Mn(HCOO)3](x=1.00−0.67).properties,ourongoingworkonorganiclight-emittingdiodeAngew.Chem.,Int.Ed.2015,54,11093−11096.(OLED)materialsshowsthatthemolecularalloystrategycan(5)Wang,F.;Kusada,K.;Wu,D.;Yamamoto,T.;Toriyama,T.;beeffectivelyemployedtotunefluorescenceemissionMatsumura,S.;Nanba,Y.;Koyama,M.;Kitagawa,H.Solid-Solutionproperties.AlloyNanoparticlesoftheImmiscibleIridium−CopperSystemwitha3063https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059−3065

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterWideCompositionRangeforEnhancedElectrocatalyticApplications.solutionwithpiezoelectricitystrongerthanleadzirconatetitanate.Angew.Chem.,Int.Ed.2018,57,4505−4509.Science2019,363,1206.(6)Ning,C.-Z.;Dou,L.;Yang,P.Bandgapengineeringin(26)Adams,C.J.;Haddow,M.F.;Lusi,M.;Orpen,A.G.Crystalsemiconductoralloynanomaterialswithwidelytunablecompositions.engineeringoflatticemetricsofperhalometallatesaltsandMOFs.Nat.Rev.Mater.2017,2,17070.Proc.Natl.Acad.Sci.U.S.A.2010,107,16033.(7)Lusi,M.EngineeringCrystalPropertiesthroughSolidSolutions.(27)Dou,J.-H.;Yu,Z.-A.;Zhang,J.;Zheng,Y.-Q.;Yao,Z.-F.;Tu,Cryst.GrowthDes.2018,18,3704−3712.Z.;Wang,X.;Huang,S.;Liu,C.;Sun,J.;Yi,Y.;Cao,X.;Gao,Y.;(8)Lusi,M.Aroughguidetomolecularsolidsolutions:design,Wang,J.-Y.;Pei,J.OrganicSemiconductingAlloyswithTunablesynthesisandcharacterizationofmixedcrystals.CrystEngComm2018,EnergyLevels.J.Am.Chem.Soc.2019,141,6561−6568.20,7042−7052.(28)Cavallo,G.;Metrangolo,P.;Milani,R.;Pilati,T.;Priimagi,A.;(9)Desiraju,G.R.CrystalEngineering:FromMoleculetoCrystal.J.Resnati,G.;Terraneo,G.TheHalogenBond.Chem.Rev.2016,116,Am.Chem.Soc.2013,135,9952−9967.2478−2601.(10)Natarajan,R.;Magro,G.;Bridgland,L.N.;Sirikulkajorn,A.;(29)Priimagi,A.;Cavallo,G.;Metrangolo,P.;Resnati,G.TheNarayanan,S.;Ryan,L.E.;Haddow,M.F.;Orpen,A.G.;Charmant,HalogenBondintheDesignofFunctionalSupramolecularMaterials:J.P.H.;Hudson,A.J.;Davis,A.P.NanoporousOrganicAlloys.RecentAdvances.Acc.Chem.Res.2013,46,2686−2695.Angew.Chem.,Int.Ed.2011,50,11386−11390.(30)Politzer,P.;Murray,J.S.;Clark,T.Halogenbondingandother(11)Hasell,T.;Chong,S.Y.;Schmidtmann,M.;Adams,D.J.;σ-holeinteractions:aperspective.Phys.Chem.Chem.Phys.2013,15,Cooper,A.I.PorousOrganicAlloys.Angew.Chem.,Int.Ed.2012,51,11178−11189.7154−7157.(31)Politzer,P.;Murray,J.S.;Clark,T.Halogenbonding:an(12)Liu,S.-Y.;Zhou,D.-D.;He,C.-T.;Liao,P.-Q.;Cheng,X.-N.;electrostatically-drivenhighlydirectionalnoncovalentinteraction.Xu,Y.-T.;Ye,J.-W.;Zhang,J.-P.;Chen,X.-M.Flexible,LuminescentPhys.Chem.Chem.Phys.2010,12,7748−7757.Metal−OrganicFrameworksShowingSynergisticSolid-Solution(32)Scilabra,P.;Terraneo,G.;Resnati,G.TheChalcogenBondinEffectsonPorosityandSensitivity.Angew.Chem.,Int.Ed.2016,55,CrystallineSolids:AWorldParalleltoHalogenBond.Acc.Chem.Res.2019,52,1313−1324.16021−16025.(33)Huynh,H.-T.;Jeannin,O.;Fourmigué,M.Organic(13)Panda,T.;Horike,S.;Hagi,K.;Ogiwara,N.;Kadota,K.;selenocyanatesasstronganddirectionalchalcogenbonddonorsforItakura,T.;Tsujimoto,M.;Kitagawa,S.MechanicalAlloyingofcrystalengineering.Chem.Commun.2017,53,8467−8469.Metal−OrganicFrameworks.Angew.Chem.,Int.Ed.2017,56,2413−(34)Thomas,S.P.;Satheeshkumar,K.;Mugesh,G.;GuruRow,T.2417.N.UnusuallyShortChalcogenBondsInvolvingOrganoselenium:(14)Etemad,S.;Engler,E.M.;Schultz,T.D.;Penney,T.;Scott,B.InsightsintotheSe−NBondCleavageMechanismoftheAntioxidantA.Organicalloys(TSeF)x(TTF)(1‑x)TCNQ-structure,conductivity,EbselenandAnalogues.Chem.-Eur.J.2015,21,6793−6800.andphasetransitions.Phys.Rev.B:Condens.MatterMater.Phys.1978,(35)Pascoe,D.J.;Ling,K.B.;Cockroft,S.L.TheOriginof17,513−528.Chalcogen-BondingInteractions.J.Am.Chem.Soc.2017,139,(15)Wiscons,R.A.;Coropceanu,V.;Matzger,A.J.Quaternary15160−15167.Charge-TransferSolidSolutions:ElectronicTunabilitythrough(36)Thomas,S.P.;Kumar,V.;Alhameedi,K.;GuruRow,T.N.Stoichiometry.Chem.Mater.2019,31,6598−6604.Non-ClassicalSynthons:SupramolecularRecognitionbyS···O(16)Dabros,M.;Emery,P.R.;Thalladi,V.R.ASupramolecularChalcogenBondinginMolecularComplexesofRiluzole.Chem.-ApproachtoOrganicAlloys:CocrystalsandThree-andFour-Eur.J.2019,25,3591−3597.ComponentSolidSolutionsof1,4-Diazabicyclo[2.2.2]octaneand4-(37)Brezgunova,M.E.;Lieffrig,J.;Aubert,E.;Dahaoui,S.;Fertey,X-Phenols(X=Cl,CH3,Br).Angew.Chem.,Int.Ed.2007,46,4132−P.;Lebegue,S.;À́ngyán,J.G.;Fourmigué,M.;Espinosa,E.Chalcogen4135.Bonding:ExperimentalandTheoreticalDeterminationsfrom(17)Reddy,D.S.;Craig,D.C.;Desiraju,G.R.Organicalloys:ElectronDensityAnalysis.GeometricalPreferencesDrivenbydiamondoidnetworksincrystallinecomplexesof1,3,5,7-tetrabro-Electrophilic−NucleophilicInteractions.Cryst.GrowthDes.2013,moadamantane,hexamethylenetetramineandcarbontetrabromide.J.13,3283−3289.Chem.Soc.,Chem.Commun.1994,12,1457−1458.(38)Kasai,H.;Tolborg,K.;Sist,M.;Zhang,J.;Hathwar,V.R.;(18)Thomas,S.P.;Sathishkumar,R.;GuruRow,T.N.OrganicFilsø,M.Ø.;Cenedese,S.;Sugimoto,K.;Overgaard,J.;Nishibori,E.;alloysofroomtemperatureliquidsthiophenolandselenophenol.Iversen,B.B.X-rayelectrondensityinvestigationofchemicalbondingChem.Commun.2015,51,14255−14258.invanderWaalsmaterials.Nat.Mater.2018,17,249−252.(19)Paul,M.;Chakraborty,S.;Desiraju,G.R.Six-Component(39)Fuller,A.L.;Scott-Hayward,L.A.S.;Li,Y.;Bühl,M.;Slawin,MolecularSolids:ABC[D1−(x+y)ExFy]2.J.Am.Chem.Soc.2018,140,A.M.Z.;Woollins,J.D.AutomatedChemicalCrystallography.J.Am.2309−2315.Chem.Soc.2010,132,5799−5802.(20)Chakraborty,S.;Joseph,S.;Desiraju,G.R.ProbingtheCrystal(40)Turner,M.J.;Grabowsky,S.;Jayatilaka,D.;Spackman,M.A.StructureLandscapebyDoping:4-Bromo,4-Chloro,and4-AccurateandEfficientModelEnergiesforExploringIntermolecularMethylcinnamicAcids.Angew.Chem.,Int.Ed.2018,57,9279−9283.InteractionsinMolecularCrystals.J.Phys.Chem.Lett.2014,5,4249−(21)Pramanik,T.;Pavan,M.S.;GuruRow,T.N.Dohalogen4255.bondsdictatethepackingpreferencesinsolidsolutions?Faraday(41)Mackenzie,C.F.;Spackman,P.R.;Jayatilaka,D.;Spackman,Discuss.2017,203,201−212.M.A.CrystalExplorermodelenergiesandenergyframeworks:(22)Oliveira,M.A.;Peterson,M.L.;Klein,D.Continuouslyextensiontometalcoordinationcompounds,organicsalts,solvatesSubstitutedSolidSolutionsofOrganicCo-Crystals.Cryst.GrowthDes.andopen-shellsystems.IUCrJ.2017,4,575−587.2008,8,4487−4493.(42)Turner,M.J.;Thomas,S.P.;Shi,M.W.;Jayatilaka,D.;(23)Mishra,M.K.;Ramamurty,U.;Desiraju,G.R.SolidSolutionSpackman,M.A.Energyframeworks:insightsintointeractionHardeningofMolecularCrystals:TautomericPolymorphsofanisotropyandthemechanicalpropertiesofmolecularcrystals.Omeprazole.J.Am.Chem.Soc.2015,137,1794−1797.Chem.Commun.2015,51,3735−3738.(24)Schwarze,M.;Tress,W.;Beyer,B.;Gao,F.;Scholz,R.;(43)Thomas,S.P.;Shi,M.W.;Koutsantonis,G.A.;Jayatilaka,D.;Poelking,C.;Ortstein,K.;Günther,A.A.;Kasemann,D.;Andrienko,Edwards,A.J.;Spackman,M.A.TheElusiveStructuralOriginofD.;Leo,K.Bandstructureengineeringinorganicsemiconductors.PlasticBendinginDimethylSulfoneCrystalswithQuasi-isotropicScience2016,352,1446.CrystalPacking.Angew.Chem.,Int.Ed.2017,56,8468−8472.(25)Liao,W.-Q.;Zhao,D.;Tang,Y.-Y.;Zhang,Y.;Li,P.-F.;Shi,P.-(44)Mackenzie,C.F.;Spackman,P.R.;Jayatilaka,D.;Spackman,P.;Chen,X.-G.;You,Y.-M.;Xiong,R.-G.AmolecularperovskitesolidM.A.CrystalExplorermodelenergiesandenergyframeworks:3064https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059−3065

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterextensiontometalcoordinationcompounds,organicsalts,solvatesandopen-shellsystems.IUCrJ.2017,4,575−587.(45)Vegard,L.DieKonstitutionderMischkristalleunddieRaumfüllungderAtome.Eur.Phys.J.A1921,5,17−26.(46)Denton,A.R.;Ashcroft,N.W.Vegard’slaw.Phys.Rev.A:At.,Mol.,Opt.Phys.1991,43,3161.(47)Parkin,G.Bond-stretchisomerismintransitionmetalcomplexes:areevaluationofcrystallographicdata.Chem.Rev.1993,93,887−911.(48)Yoon,K.;Parkin,G.;Rheingold,A.L.Bond-stretchisomerisminthechlorooxomolybdenumcomplexescis-mer-MoOCl2(PR3)3:areinvestigation.J.Am.Chem.Soc.1992,114,2210−2218.(49)Tauc,J.OpticalpropertiesandelectronicstructureofamorphousGeandSi.Mater.Res.Bull.1968,3,37−46.(50)Nobbs,J.H.KubelkaMunktheoryandthepredictionofreflectance.Rev.Prog.Color.Relat.Top.1985,15,66−75.(51)Avilés,M.A.;Córdoba,J.M.;Sayagués,M.J.;Gotor,F.J.TailoringtheBandGapintheZnS/ZnSeSystem:SolidSolutionsbyaMechanicallyInducedSelf-SustainingReaction.Inorg.Chem.2019,58,2565−2575.(52)Li,Y.;Deng,R.;Yao,B.;Xing,G.;Wang,D.;Wu,T.TuningferromagnetisminMgxZn1−xOthinfilmsbybandgapanddefectengineering.Appl.Phys.Lett.2010,97,102506−102506.(53)AminorroayaYamini,S.;Patterson,V.;Santos,R.Band-GapNonlinearityinLeadChalcogenide(PbQ,Q=Te,Se,S)Alloys.ACSOmega2017,2,3417−3423.(54)Wu,J.;Walukiewicz,W.;Yu,K.M.;Ager,J.W.;Haller,E.E.;Lu,H.;Schaff,W.J.SmallbandgapbowinginIn1−xGaxNalloys.Appl.Phys.Lett.2002,80,4741−4743.(55)Wu,J.;Walukiewicz,W.;Yu,K.M.;Ager,J.W.;Li,S.X.;Haller,E.E.;Lu,H.;Schaff,W.J.Universalbandgapbowingingroup-IIInitridealloys.SolidStateCommun.2003,127,411−414.3065https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059−3065

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭