Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices

Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices

ID:83250203

大小:1.02 MB

页数:5页

时间:2023-07-05

上传者:不会吐泡的鱼
Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices_第1页
Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices_第2页
Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices_第3页
Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices_第4页
Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices_第5页
资源描述:

《Economic Dispatch of Distributed Integrated Energy Systems Considering Energy Storage Devices》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

2018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018InteractionStrategyofUserSideStorageDevicesfortheDay-aheadDispatchofDistributedIntegratedEnergySystemsYuxiongHuang,StudentMember,IEEE,GengfengLi,Member,IEEE,andZhaohongBie,SeniorMember,IEEE,JiangfengJiang,StudentMember,IEEENAllocationmatrixofenergyhubAbstract—Multi-energycomplementarityisbeneficialtore-CCouplingmatrixbetweenconvertersandloadeducetheoperatingcostandimprovethereliabilityofenergysys-cCouplingfactorbetweeninputandloadtems.Thispaperpresentsanoptimizationframeworkfortheday-aheaddispatchofdistributedintegratedenergysystemDispatchfactorbetweeninputandload(DIES),toexploretheinteractionstrategyofusersidestoragetdevicesparticipatingintheeconomicdispatchofDIES.Firstly,aPriceofenergycarrierattimetthemodelofDIESisestablishedbasedontheconceptofenergytPEnergyconsumedbythei-thconverterwithhub.Then,onthisbasis,theoptimizationmodelfortheday-aheadidispatchofaDIESisbuilttoachievethelowestoperationcost.energycarrierasinputattimeperiodtFurthermore,thefeasibilityoftheproposedmethodisvalidatedParametersbyextensivecasesstudies.Resultsshowthatmulti-energycom-plementaryandenergystoragedevicescanreducetheoperatingLEnergydemandvectorinenergyhubcostofenergysystemseffectively.PMinimuminputvectorofenergyhubminPMaximuminputvectorofenergyhubIndexTerms—economicdispatch,energyhub,distributedin-maxtegratedenergysystem,multi-energycomplementarityPMinimuminputvectorofconverterscminPMaximuminputvectorofconverterscmaxΔPMinimumchangevectorofconverters’inputNOMENCLATUREcminΔPMaximumchangevectorofconverters’inputSetsandindicescmaxSMinimuminputvectorofstoragedevicesSetofconverterswithenergycarrierasinputminSetofenergycarriersSmaxMaximuminputvectorofstoragedevicesNNumberofconvertersthatconsumeenergyEsminMinimumstoragevectorofstoragedevicesNtNumberoftimeperiodsineconomicdispatchEsmaxMaximumstoragevectorofstoragedevices0EInitialstoragecapacityvectorofstoragedevicesVariablessENtStoragecapacityvectorattimeperiodSEnergyinputvectorofstoragedevicessNtPEnergyinputvectorinenergyhubEfficiencyfactorbetweeninputandloadPEnergyinputvectorofconverterscFunctionsEEnergystoragevectorofstoragedevicesCCouplingmatrixofenergyhubf()PcOperationcostfunctionofDIESttfP()CostfunctionofconvertersiThisworkwassupportedinpartbytheNationalKeyR&DProgramofChina(2016YFB0901100)andtheNationalNaturalScienceFundofChinaI.INTRODUCTION(51607136).NERGYisthecornerstoneofhumansocialdevelopment.Y.Huang,G.Li,Z.Bie,andJ.JiangarewithStateKeyLaboratoryofEElectricalInsulationandPowerEquipment,ShaanxiKeyLaboratoryofSmartIntoday'ssociety,ontheonehand,thetotaldemandforGrid,Xi’anJiaotongUniversity,Xi’an710049,China.CICED2018PaperNo.201805280000061�Page1/52191

12018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018energycontinuestogrow.Ontheotherhand,people'sawarenessofenergyconservationandenvironmentalprotec-P1storagePconverterStionisgrowingrapidly.HowtoimproveenergyefficiencytoLPmeetgrowingenergyneedsandenvironmentalprotectionre-2converterstoragequirementshasbecomeahotissueintheenergyfield.TheSP1Lconceptofdistributedintegratedenergysystems(DIES)[1]-[4]Pconverterishelpstoimprovethecomprehensiveutilizationefficiencyofmultipleenergycarriers,achievesustainablesupplyofre-storagePNSsources,andincreasetheflexibility,reliability,andeconomyofPconverterLenergysupplybymeansofmulti-energycomplementarity.Theprocesseslikeproduction,transmission,conversion,Fig.1.ModelofDIES.storage,andconsumptionofvariousenergycarrierse.g.elec-variousenergystoragedevicesintheprocessofmodelingandtricity,naturalgas,anddistrictheat,arecoordinatedorganicallyoptimizationframeworkofDIES.inDIES[1],formingaunifieduseofcomprehensivesocialTheapproachpresentedinthispaperaimstoprovidetheenergysources.ComparedwithanindependentenergysupplyoptimaloperationstrategyforaDIESunderthereal-timepricesystem,DIEShasmanyvirtues.1)Thesafetyandreliabilitymechanism,whereelectricity,naturalgasanddistrictheatarecanbeimprovedthroughtheorganiccoordinationbetweenadoptedasavailableenergycarriers,anddiversifiedenergyvariousenergysupplysystems.2)Theoptimaldispatchbe-storagedevicesisalsotakenintoconsideration.Inthispaper,tweensubsystemscanenhancetheenergyutilizationefficiencythemodelofaDIESwithvariousenergystoragedevicesisandeconomyofsystem.3)DIESisconductivetothecon-establishedbasedontheconceptofenergyhub.Onthisbasis,sumptionofrenewableenergyandthesustainablesupplyofanoptimizationframeworkispresentedtorealizetheoptimalsocialresources.However,thecouplingofdiversifiedsubsys-economicdispatchofaDIES,whereconstrainse.g.energytemsalsomakeswholesystemmorecomplex,andwithmorebalanceanddevicecapacityconstrainareconsidered.uncertainty.Andvariousenergycharacteristicsmakethere-Thispaperisorganizedasfollows.ThemodelofDIESbasedsearchonDIESchallenging.ontheenergyhubconceptispresentedinSectionII.Theeco-Torepresentthemulti-energycomplementarity,theconceptnomicdispatchmodelisestablishedinSectionIII.Casestudiesofenergyhubwaspresentedin[5]byaresearchteamatPowerarecarriedouttodemonstratethepresentedapproachinSec-SystemsandHighVoltageLaboratoryatETHZurich.EnergytionIV,followedbySectionVthatconcludesthispaper.hubcanbeconsideredasalinearmodelofDIES,inwhichmultipleenergycarrierscanbeconverted,conditioned,andII.MODELOFDIESstored.ManystudiesonDIESarecarriedoutbasedontheconceptofenergyhube.g.DIES’splanning,reliabilityevalu-Toconciselydepicttheconversionrelationshipbetweenation,optimalenergyflow,andintegrateddemandresponsedifferentenergycarriersinDIES,theconceptofenergyhubis[6]-[12].Inparticular,theoptimaloperationofenergysystemsintroducedinthispaper.AgeneralenergyhubmodelofDIESincludingmultipleenergycarriershasbeenaddressedinaconcludingdiversifiedstoragedevicesisshowninFig.1.numberofpublications.Differentmethodshavebeendevel-Anenergyhubintegratesvariousenergyconverterse.g.gasopedandusedforvariouspurposes.Ageneralmodelingandturbines,heatexchangersandtransformerstoconnectdiversi-optimizationframeworkforenergysystemsincludingmultiplefiedenergyinputsandoutputs.Andthemathematicalrela-energycarriersisproposedin[5].Anoptimalday-aheadeco-tionshipinconversionprocesscanbedepictedbyacouplingnomicdispatchingstrategyformicrogridconsideringpowertomatrixC,whichisformulatedas:gas(P2G)technologyisexploredin[13].Optimaloperationofmulti-carriersenergysystemincorporatingdemandresponseisLScccPdiscussedin[14],[15].Astrategyofdistributedenergyman-LScccP(1)agementfornetworkedmicrogridsisproposedin[16].Toensureareliableandeconomicalenergysupply,diversi-LScccPfiedenergystoragedevicesbecomemoreaccessibleandpop-LSCPularinmodernsociety.InDIES,bymeansofenergyconver-siondevices,storagedevicescannotonlystoreenergywhenwhere:thepriceislowanddischargeenergywhenthepriceishigh,butc(2)alsostorehigh-costenergyfromlow-costenergy,resultinginamorerationaloperationstrategy.Thus,itisworthconsideringConservationofpowerrequiresthatthesumofalldispatchCICED2018PaperNo.201805280000061�Page2/52192

22018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018factorsisequaltoone.transformerPThevectorofconverterinputPcanbeexpressedasthePe1ceSLeeproductofamatrixΝcontainingthedispatchfactorsandthePg1batteriesCHPhub’sinputvectorP.PgPg2heatP00PGB11storageP00PPS21Ph1HEhL(3)hhFig.2.Structureoftestsystem.PNN00PPNP2)InputCapacityConstraintcThen,combinedwith(2),(1)canberewrittenas:tPPP(9)minmaxLS12NP13)ConvertersConstraintsLSPt12N2PPP(10)(4)cminccmaxt(t-1)LSNPNΔPcminP-PccΔPcmax(11)12LSPCec4)EnergyStorageConstraintstTheenergystorageinstoragedevicesattimeperiodtcanSSS(12)minmaxbedeterminedbetheenergystorageandoutputpoweratthetlasttimeperiod,whichisformulatedas:EsminEsEsmax(13)tt-1t-10NE=E+St(5)E-Et=0(14)ssssIII.OPTIMIZATIONIV.CASESTUDIESWithdifferentenergycarriersavailableattheinputsandtheA.IntroductionofTestSystempossibilityofinternalconversion,DIEScanofferflexibilityonThestructureoftestsystem,whereelectricity,naturalgastheinputside.Inthissection,anoptimizationframeworkofaanddistrictheatasinputenergycarriers,isshowninFig.2.TheDIESconsideringdiversifiedstoragedevicesisproposedtooutputenergycarrierscoverelectricityandheat.Energycon-improvetheoveralloperationefficiency.vertersconsistoftransformer,CHP,gasboiler(GB)andheatA.ObjectionFunctionexchanger(HE).AndtherearetwokindsofenergystorageInthispaper,weaimatminimizingthetotalenergycon-devicestostoreelectricityandheat,respectively.sumptioncostofallenergycarriersinagiventimeperiod.ForaInthispaper,wediscusstheoptimalday-aheadeconomicDIES,thecostofenergycanbeformulatedasafunctionofdispatch,meaningthatthetimeperiodintheoptimizationconverterinputvectorP.Therefore,theobjectivefunctionofframeworkisadoptedas24hours,andmakeanhourlyeco-cnomicdispatchtodeterminethehourlyoutputofeachunit.TheeconomicdispatchofaDIESisformulatedas:requiredparametersforeconomicdispatcharelistedinTab.1.NtMoreover,Fig.3showthepricesofelectricity,naturalgasandttmin()fPcf(Pi)(6)districtheatduringaday,andFig.4showtheloaddemandofti1electricityanddistrictheatduringaday.wherethecostofvariousenergycarrierscanbeappropriatelyThreecasesareexploredinthispaper:formulatedastheproductofpriceandpower,asshownbelow:Case1:DIESwithconvertersandstoragedevices.Case2:DIESwithconvertersbutwithoutstoragedevices.ttttfP()iiaP(7)Case3:DIESwithoutconvertersandstoragedevices.RelatedoptimizationproblemsaresolvedbymeansofCVX.B.Constraints1)EnergyBalanceConstraintB.ResultsofEconomicDispatch1)ComparisonsofOperationCosttttL+S-CP=0(8)ecCICED2018PaperNo.201805280000061�Page3/52193

32018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018TABLEIelectricitypricenaturalgaspricedistirictheatpriceTHEREQUIREDPARAMETERSFORDIESECONOMICDISPATCH50.000.3P800CHPeh1max40.000.4S-200CHPhemin30.000.8S180GBemax20.000.9S-250HEhminP0S200Price(cents/kWh)10.00eminhmaxP1000E400.00emaxsemin123456789101112131415161718192021222324Pgmin0Esemax400Time(hour)Pgmax1200Eshmin50Fig.3.Pricesofvariouskindsofenergyduringaday.Phmin0Eshmax500electricityloadheatloadP1000P-1000hmaxe1minP0P10001200.0e1mine1max1000.0Pe1max1000Pg1min-300800.0Pg1min0Pg1max300600.0400.0Pg1max800Pg2min-300Load(kW)200.0P0P300g2ming2max0.0Pg2max700P-300123456789101112131415161718192021222324h1minTime(hour)P0P300h1minh1maxFig.4.Electricityloadandheatloadduringaday.TABLEIItransformerCHPGBHETHEDISPATCHRESULTOFSYSTEMOPERATIONCOST(CENTS)1000Case1Case2Case3800402940414217593826600400ThedispatchresultofsystemoperationcostindifferentPower(kW)200casesisshowninTab.II.ComparedwithCase3(without0123456789101112131415161718192021222324convertersandstoragedevices),operationcostsofCase2(withTime(hour)converters)andCase1(withconvertersandstoragedevices)Fig.5.Dispatchresultofeachconverterincaseone.havereducedby30.25%and32.15%,respectively.Theresultshowsthatmulti-energycomplementarityisofgreatsignifi-electricitystorageheatstoragecanceinparingdownoperationcost.Buttheroleofstorage200devicesinthisareainnotobvious,andthereasonforthisisbecausenaturalgas,thelowestcostenergyamongthreeenergy100carriers,isthemainsourceofenergyconsumptionforthe0system,makingtheregulationofstoragedevicesdifficultto123456789101112131415161718192021222324-100reflect.Power(kW)2)DispatchResultofEachUnit-200ThehourlyoutputofeachconverterinCase1isshowninFig.-3005.ItcanbeseenthatthetotalpowerconsumedbyCHPandGBTime(hour)alwaysequalto1200kW,whichisthemaximumpowerofFig.6.Dispatchresultofeachstoragedeviceincaseone.naturalgassupplyontheinputside,sincethepriceofnaturalgasischeaperthanelectricityanddistrictheat(seeFig.3).ThedispatchresultofeachstoragedeviceinCase1isshownFurthermore,becausethepriceofelectricityishigherthaninFig.6,wherethepositivevalueofpowerindicatesthatthedistrictheat,CHPrunsatitsmaximumpower(800kW)tostoragedeviceisinastoredstate,andthenegativevalueindi-convertnaturalgastoelectricityasmuchaspossible.Andthecatesthatthestoragedeviceisinadischargedstate.CombinedelectricityloadandheatloadthatCHPandGBcannotaffordwithFig.3,wecanobservethatstoragedevicestendtostorearesuppliedbytransformerandheatexchanger,respectively.energywhenthepriceislowanddischargeenergywhentheCICED2018PaperNo.201805280000061�Page4/52194

42018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018case1case2[3]QuelhasA,GilE,McCalleyJD,etal.,“Amultiperiodgeneralizednet-0.78workflowmodeloftheUSintegratedenergysystem:PartI—Model0.76description,”IEEETrans.PowerSyst.,vol.22,no.2,pp.829-836,May.0.742007.0.72[4]QuelhasA,McCalleyJD,“Amultiperiodgeneralizednetworkflow0.7modeloftheUSintegratedenergysystem:PartII-simulationresults,”0.68IEEETrans.PowerSyst.,vol.22,no.2,pp.837-844,May.2007.0.66[5]GeidlM,AnderssonG,“Optimalpowerflowofmultipleenergycarriers,”0.64IEEETrans.PowerSyst.,vol.22,no.1,pp.145-155,Feb.2007.0.62[6]PazoukiS,HaghifamMR,“Optimalplanningandschedulingofenergy0.6hubinpresenceofwind,storageanddemandresponseunderuncertain-Dispatchfactorofnaturalgas123456789101112131415161718192021222324ty,”InternationalJournalofElectricalPower&EnergySystems,vol.80,Time(hour)pp.219-239,2016.[7]MohammadiM,GhasempourR,AstaraeiFR,etal.,“OptimalplanningFig.7.Dispatchfactorsofnaturalgasincaseoneandcasetwo.ofrenewableenergyresourceforaresidentialhouseconsideringeco-nomicandreliabilitycriteria,”InternationalJournalofElectricalPowerpriceisrelativelyhigh,toreducethetotalcostofsystemoper-&EnergySystems,vol.96,pp.261-273,2018.[8]LiG,BieZ,KouY,etal.,“Reliabilityevaluationofintegratedenergyation,whichisinlinewithimagination.systemsbasedonsmartagentcommunication,”Appl.Energy,vol.167,3)DispatchFactorspp.397-406,2016.Thehourlydispatchfactorsthatrepresenttheproportionof[9]SheikhiA,RayatiM,BahramiS,etal.,“AcloudcomputingframeworknaturalgasallocatedtotheCHPunitonthesysteminputsideinondemandsidemanagementgameinsmartenergyhubs,”InternationalJournalofElectricalPower&EnergySystems,vol.64,pp.1007-1016,Case1andCase2areshowninFig.7.InCase1,thehourly2015.dispatchfactorsalwaysequalto0.667,whichmeans66.7%[10]KamyabF,BahramiS,“Efficientoperationofenergyhubsintime-of-usenaturalgasontheinputsideisallocatedtoCHPunitandtheanddynamicpricingelectricitymarkets,”Energy,vol.106,pp.343-355,2016.last33.3%isallocatedtoGBunit.Theresultsisconsistentwith[11]SheikhiA,RayatiM,BahramiS,etal.,“Integrateddemandsideman-thedatashowninFig.5.AndinCase2,becausetheheatloadinagementgameinsmartenergyhubs,”IEEETrans.SmartGrid,vol.6,no.hour9,10and15-18isrelativelylowwhichresultsinthenat-2,pp.675-683,Mar.2015.[12]QuK,YuT,HuangL,etal.,“Decentralizedoptimalmulti-energyflowofuralgasallocatedtoGBunitdecreases,thefactorsintherelarge-scaleintegratedenergysystemsinacarbontradingmarket,”Energy,periodsishigherthan0.667.Moreover,combinedwiththedatavol.149,pp.779-791,2018.showninFig.6,itcanbeseenthat,inCase1,theinputofGB[13]ChenZ,WangD,JiaH,etal.,“Researchonoptimalday-aheadeconomicdispatchingstrategyformicrogridconsideringP2Gandmulti-sourceunitdoesn’tdecreaseandheatstoragedevicesstorethere-energystoragesystem,”ProceedingsoftheCSEE,vol.37,no.11,pp.dundantheatinthesetimeperiods.3067-3077,Jun.2017.Comparingthesetwocases,wecandrawtheconclusionthat[14]LinnaN,LiuW,WenF,etal.,“Optimaloperationofelectricity,naturalgasandheatsystemsconsideringintegrateddemandresponsesanddi-storagedevicescontributestotheflexibleadjustmentofcon-versifiedstoragedevices,”JournalofModernPowerSystems&Cleanversiondevices.Energy,vol.6,no.3,pp.423-437,Jun.2018.[15]XiaoH,PeiW,DongZ,etal.,“Bi-levelplanningforintegratedenergyV.Csystemsincorporatingdemandresponseandenergystorageunderun-ONCLUSIONcertainenvironmentsusingnovelmetamodel,”CSEEJournalofPowerTheinteractionstrategyofusersidestoragedevicepartici-andEnergySystems,vol.4,no.2,pp.155-167,Jun.2018.patingintheday-aheaddispatchofDIESisstudiedinthispaper.[16]MaW,WangJ,GuptaV,etal.,“Distributedenergymanagementfornetworkedmicrogridsusingonlineadmmwithregret,”IEEETrans.ThemodelofDIESconcludingdiversifiedenergystorageSmartGrid,vol.9,no.2,pp.847-856,Mar.2018.devicesinbuiltbasedontheconceptofenergyhub.Subse-quently,aday-aheadoptimaloperationstrategyofaDIESwithYuxiongHuang(S’17)receivedtheB.S.degreefromtheSchoolofElectricalstoragedevicesispresentedtoimprovetheeconomyofopera-Engineering,Xi’anJiaotongUniversity,Xi’an,China,in2017.Heiscurrentlytion.Finally,thefeasibilityofthemethodproposedinthispursuingtheM.S.degreeinXi’anJiaotongUniversity.paperisverifiedbycasestudies.Andresultsshowthatmul-Hismajorresearchinterestsincludepowersystemreliabilityevaluationandintegratedenergysystem.ti-energycomplementarityandstoragedevicescanparedownthesystemoperationcosteffectivelycomparedwithinde-GengfengLi(M’13)receivedthePh.D.degreeinelectricalengineeringfrompendentenergysystems.Xi’anJiaotongUniversity,Xi’an,China,in2014.HeiscurrentlyanassociateprofessorofSchoolofElectricalEngineeringinXi’anJiaotongUniversity.Hisresearchinterestsincludepowersystemrelia-REFERENCESbilityevaluationandintegrationofrenewableenergy.[1]LiG,BieZ,WangR,etal.,“ResearchStatusandProspectsonReliabilityEvaluationofIntegratedEnergySystem,”HighVoltageEngineering,vol.ZhaohongBie(M’98-SM’12)receivedthePh.D.degreefromXi’anJiaotongUniversity,Xi’an,China,in1998.43,no.1,pp.114-121,Jul.2017.Currently,sheisaprofessorinXi’anJiaotongUniversity.Herresearchin-[2]CleggS,MancarellaP,“Integratedelectricalandgasnetworkflexibilityterestsincludepowersystemreliabilityevaluation,integrationofrenewableassessmentinlow-carbonmulti-energysystems,”IEEETrans.Sustain.energy,smartgrid,microgrids,andCyber-PhysicalEnergySystem.Energy,vol.7,no.2,pp.718-731,Apr.2016.CICED2018PaperNo.201805280000061�Page5/52195

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭