广州新白云机场航站楼钢结构设计

广州新白云机场航站楼钢结构设计

ID:12546290

大小:37.00 KB

页数:6页

时间:2018-07-17

广州新白云机场航站楼钢结构设计_第1页
广州新白云机场航站楼钢结构设计_第2页
广州新白云机场航站楼钢结构设计_第3页
广州新白云机场航站楼钢结构设计_第4页
广州新白云机场航站楼钢结构设计_第5页
资源描述:

《广州新白云机场航站楼钢结构设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、广州新白云国际机场航站楼钢结构设计1、钢结构工程概况主楼长325M,宽235M,其中平面又二片反向的圆弧形带组成,见图9。主楼南北两侧钢无该的支承构件是一排由3Φ273×16圆钢管组成的三角形变截面人字形组合柱,人字形柱的两端铰接,使柱的受力最小,以期取得修长轻巧的建筑效果。人字形柱的柱顶高度从东西二端的14.7M升高到中间的35.7M,由里向外倾斜。主楼的内部设置了二排巨形变截面混凝土箱形柱,由于主楼脊骨结构(spinestructure)的两侧是刚度及约束都较小的人字形铰接柱,在脊骨结构的内部设计刚度较大的抗侧力柱

2、是必要的。巨形柱的柱距为18M,在基础处的截面为2500MM×4500MM,刚接于基础,承受全部水平力。主楼的屋盖为近似的几何球形,巨形柱的柱顶高度又东西二端的21M上升到中间的41.9M。主楼采用三角形钢管桁架结构,跨度为76.9M,桁架高度为5M,两端铰接支承在人字形柱及混凝土巨形柱上,主桁架在人字形柱以外的南北方向悬挑7~23M。主桁架两上弦杆的间距从人字形柱处的3.8M变化到巨形柱处的5.25M,弦杆为508×16~25MM,腹杆为Φ245×7.1~12MM。腹杆在下弦杆交汇点的间距为6.35M。主桁架之间的屋

3、面结构是14M跨度的箱形压型钢板,主楼屋盖共设置了二道伸缩缝,伸缩缝采用悬挑结构,这时箱形屋面压型钢板悬挑7M,这种箱形压型钢板除了作为结构板外还兼作屋盖支撑,整个屋面简洁美观。为了增加建筑外观的造型变化以及满足采光要求,主桁架在巨形柱处上升为一个拱型桁架采光带,采光带的宽度由中间的20M变化到东西二端约50M,采光带是玻璃纤维张拉膜结构。主楼的屋盖透视图见图10。连接楼分为东西连接楼,每翼连接楼的平面为450×62M,地上三层,用三道伸缩缝将混凝土楼盖分为四段,用二到伸缩缝将屋面分为三段。连接楼的柱距为18M,典型的

4、钢桁架见图11。三角形圆管桁架的弦杆为3Φ245×12~16MM,腹杆为Φ127×6~12MM,桁架的高度2.8M,上弦杆的间距为3M。主桁架一端落地,另一端支承在由3Φ168×12.5MM的钢管组成的变截面人字形组合柱上,与主楼人字形柱子不同的是,连接楼的人字形柱是从外向里倾斜的。主桁架在跨中位置支承于1M直径的钢筋混凝土圆柱上,从落地端到混凝土柱的跨度约25M,从混凝土柱到人字形柱的跨度约30M,再悬挑约7M。连接楼的屋面是有檩体系。屋面板是层压型钢板,部分屋面为玻璃纤维张拉膜。整个屋面沿纵向设置了5道次桁架,次桁

5、架即支承檩条也是屋盖的支撑,在屋盖伸缩缝处设有X形的支撑。东一西一指廊的平面为360mX38.8m,东二及西二指廊的平面为252mX38.8m。指廊为三层建筑,柱距为12m。混凝土楼盖的伸缩缝间距为96m。钢屋盖的伸缩缝间距为126m。与主楼相同,屋盖伸缩缝采用悬挑结构,在伸缩处悬挑6m指廊屋盖钢桁架采用方钢管平面桁架,主桁架跨度24m,支承于钢筋混凝土柱子上,两端各悬挑7.4m。混凝土柱的高度为23.6~12.6m。主桁架高2.2m,弦杆为口250X12~16mm,腹杆为口160~180X6~8mm,屋面为1.6mm

6、及2.0mm厚和箱形压型钢板。指廊屋盖在混凝土柱顶设有2道纵向支撑。东西高架连廊为二层钢结构,连接主航站楼和连接楼。高架连廊的宽度为13~16m,跨度为54m,两端带有4.5m~7.0m的悬挑,屋面标高为20~40m,屋面为玻璃纤维张拉膜,楼盖为型钢梁及压型钢板――混凝土纵使组合楼板。高架连廊为口400mm及口500mm的方管钢桁架,支承于1078X461X70X125mm的焊接H型钢柱上。高架连廊的高度高,跨度大,宽度窄,对抗水平力非常不利,在航站楼的四建筑物的单位用钢量中,高架连廊的用钢量最大。高架连廊典型桁架见图

7、12。2、屋盖的结构分析与荷载大跨度的屋盖自重较轻,本工程为6度设防,结构分析中不考虑地震作用,屋盖的最主要荷载是风荷载。风荷载按中国规范取值,最大风压的重现期取100年。主桁架的计算考虑风振系数,风振系数由水平风力和竖向风力作用下结构动力计算得到。屋面板的计算考虑正风压的峰值及负风压,风压的峰值及风荷载的内压力、内吸力由风洞试验确定。根据风洞试验结果,中央高四角低的近似几何球形屋面对于抗风较为有利,主楼的四角有长达23m的悬挑,悬挑部分的负风压是主桁架的控制荷载之一,近似的球形屋面使四个角的负风压最小。结构的整体计算

8、采用美国结构分析与设计程序STAAD,并用同济大学空间钢结构计算程序3D3S及美国MARC公司大型通用有限元程序Marc进行验算比较,节点有限元分析及人字形柱的有限元分析采用ANSYS程序。空间计算模型由Autocad三维模型线框图转换而成。桁架弦杆、腹杆采用柱单元(考虑轴向、弯曲、剪切和扭转变形),宽翼缘工字钢及角钢采用梁单元(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。