欢迎来到天天文库
浏览记录
ID:27413307
大小:21.09 KB
页数:13页
时间:2018-12-03
《xx届高考数学总复习考点推理与证明专项教案_1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX届高考数学总复习考点推理与证明专项教案本资料为woRD文档,请点击下载地址下载全文下载地址 www.5y kj.co m 推理与证明 【学法导航】 了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考
2、过程、特点;了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。 解答推理问题时,先明确出是哪种推理形式,显然归纳、演绎等推理方式在以往的学习中已经接触过,类比推理相对而言学生比较为陌生.所以复习类比推理时应抓住两点:一是找出合理的类比对象,二是找出类比对象,再进一步找出两类事物间的相似性或一致性.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成
3、绩。通过各部的相互努力,我们获得了不少经验。 解答证明题时,要注意是采用直接证明还是间接证明。在解决直接证明题时,综合法和分析法往往可以结合起来使用。综合法的使用是“由因索果”,分析法证明问题是“执果索因”,它们是两种思路截然相反的证明方法,分析法便于寻找解题思路,而综合法便于叙述,因此使用时往往联合使用。分析法要注意叙述的形式:要证A,只要证明B,B应是A成立的充分条件。 复习反证法时,注意:一是“否定结论”部分,把握住结论的“反”是什么? 二是“导出矛盾”部分,矛盾有时是与已知条件矛盾,有时是与假设矛盾,而有时又是与某定义、定理
4、、公理或事实矛盾,因此要弄明白究竟是与什么矛盾. 对于些难于从正面入手的数学证明问题,解题时可从问题的反面入手,探求已知与未知的关系,从而将问题得以解决。因此当遇到“否定性”、“唯一性”、“无限性”、“至多”、“至少”等类型命题时,宜选用反证法。 【专题综合】团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 推理
5、是数学的基本思维过程,高中数学课程的重要目标就是培养和提高学生的推理能力,因此本部分内容在高中数学中占有重要地位,是高考的重要内容.由于解答高考试题的过程就是推理的过程,因此本部分内容的考查将会渗透到每一个高考题中.在复习时,应注意理解常用的推理的方法,了解其含义,掌握其过程以解决具体问题.因此XX年、XX年山东卷、广东卷、海南、宁夏卷没有单独考查此内容也在情理之中。XX年的高考题中只有江苏卷、福建卷、浙江卷的高考试题中出现了合情推理与演绎推理的试题。但是,今后的高考中考查推理内容,最有可能把推理渗透到解答题中考查,因为解答与证明题本身就
6、是一种合情推理与演绎推理作为一种推理工具是很容易被解答与证明题接受的. .与数列结合考察推理 例1(09浙江文)设等差数列的前项和为,则,,,成等差数列.类比以上结论有:设等比数列的前项积为,则, , ,成等比数列. 答案. 【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力 【解析】对于等比数列,通过类比,有等比数列的前项积为,则,,成等比数列. 2.与解析几何集合考察推理 例2(03年上海)已知椭圆具有性质:若是椭圆上关于原点对称的两个
7、点,点是椭圆上的任意一点,当直线的斜率都存在时,则是与点位置无关的定值,试对双曲线写出具有类似特性的性质。 答案:. 3.与立体几何结合考察推理团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 例3在DEF中有余弦定理:.拓展到空间,类比三角形的余弦定理,写出斜三棱柱ABc-的3个侧面面积与其中两个侧面所成二面角
8、之间的关系式,并予以证明. 分析 根据类比猜想得出. 其中为侧面为与所成的二面角的平面角. 证明:作斜三棱柱的直截面DEF,则为面与面所成角,在中有余弦定理:, 同乘以,得 即
此文档下载收益归作者所有