Painleve analysis of a class of diffusion equation

Painleve analysis of a class of diffusion equation

ID:37582511

大小:697.44 KB

页数:10页

时间:2019-05-25

Painleve analysis of a class of diffusion equation_第1页
Painleve analysis of a class of diffusion equation_第2页
Painleve analysis of a class of diffusion equation_第3页
Painleve analysis of a class of diffusion equation_第4页
Painleve analysis of a class of diffusion equation_第5页
资源描述:

《Painleve analysis of a class of diffusion equation》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、JournalofAppliedMathematicsandStochasticAnalysis9,Number1,1996,77-86PAINLEVEANALYSISOFACLASSOFNONLINEARDIFFUSIONEQUATIONSP.CHANDRASEKARANandE.K.RAMASAMIBharathiarUniversityDepartmentofMathematicsCoimbatore5106,INDIA(ReceivedOctober,1994;RevisedOctober,1995)ABSTRACTWestudythePainleveanalysisforacl

2、assofnonlineardiffusionequations.WefindthatinsomecasesithasonlytheconditionalPainlevepropertyandinothercases,justthePainleveproperty.Wealsoobtainedspecialsolutions.Keywords:Nonlinear-DiffusionEquation,PainleveAnalysis,PainleveEquation,SpecialSolutions.AMS(MOS)subjectclassifications:35Q51.1.Introd

3、uctionInrecentyears,muchattentionhasbeenfocusedonhigherordernonlinearpartialdifferentialequations,knownasevolutionequations.Suchnonlinearequationsoftenoccurinthedescriptionofchemicalandbiologicalphenomena.Theiranalyticalstudyhasbeendrawingimmenseinterest.Afundamentalquestionwhendealingwithnonline

4、ardifferentialequationsis"howcanonetellbeforehandwhetherornottheyareintegrable?"Originally,Ablowitzetal[1]conjectur-edthatanonlinearpartialdifferentialequationisintegrableifallitsexactreductionstoordinarydifferentialequationshavethePainleveproperty:thatis,tohavenomovablesingularitiesotherthanpole

5、s.Thisapproachposesanobviousoperationaldifficultyinfindingallexactreductions.ThisdifficultywascircumventedbyWeissetal[10]bypostulatingthatapartialdifferentialequa-tionhasthePainlevepropertyifitssolutionsaresingle-valuedaboutamovablesingularmanifold(z,z2,...,Zn)0,(1.1)whereisanarbitraryfunction.In

6、otherwords,asolutionu(zi)ofapartialdifferentialequationshouldhaveaLaurent-likeexpansionaboutthemovablesingularmanifold0:u(zi)[(zi)]uj(zi)(zi)j,(1.2)2--0whereaisanegativeinteger.Thenumberofarbitraryfunctionsinexpansion(1.2)shouldbeequaltotheorderofthepartialdifferentialequation.Insertingexpansion(

7、1.2)intothetargetedequationyieldsarecurrenceformulathatdeterminesUn(Zi)foralln>0,exceptforafinitenumberofrl,r2,r3,...,rj>0,calledresonances.Forsomeequations,therecurrenceformulasattheresonancevaluesmayresultinconstrain

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。