正交实验设计原理

正交实验设计原理

ID:7233114

大小:878.92 KB

页数:24页

时间:2018-02-08

正交实验设计原理_第1页
正交实验设计原理_第2页
正交实验设计原理_第3页
正交实验设计原理_第4页
正交实验设计原理_第5页
资源描述:

《正交实验设计原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、正交实验设计1.概述任何生产部门,任何科学实验工作,为达到预期目的和效果都必须恰当地安排实验工作,力求通过次数不多的实验认识所研究课题的基本规律并取得满意的结果。例如为拟定一个正确而简便的分析方法,必然要研究影响这种分析方法效果的种种条件,诸如试剂浓度和用量、溶液酸度、反应时间以及共存组分的干扰等等。同时,对于影响分析效果的每一种条件,还应通过试验选择合理的范围。在这里,我们把受到条件影响的反系方法的准确度、精密度以及方法的效果等叫做指标;把试验中要研究的条件叫做因素;把每种条件在试验范围内的取值(或选取的试验点

2、)叫做该条件的水平。这就是说我们常常遇到的问题可能包括多种因素,各种因素又有不同的水平,每种因素可能对分析结果产生各自的影响,也可能彼此交织在一起而产生综合的效果。正交试验设计就是用于安排多因素实验并考察各因素影响大小的一种科学设计方法。它始于1942年,之后在各个领域里都得到很快的发展和广泛应用。这种科学设计方法是应用一套已规格化的表格——正交表来安排实验工作,其优点是适合于多种因素的实验设计,便于同时考查多种因素各种水平对指标的影响通过较少的实验次数,选出最佳的实验条件,即选出各因素的某一水平组成比较合适的条

3、件,这样的条件就所考查的因素和水平而言,可视为最佳条件。另一方面,还可以帮助我们在错综复杂的因素中抓住主要因素,并判断那些因素只起单独的作用,那些因素除自身的单独作用外,它们之间还产生综合的效果。数理统计上的实验设计还能给出误差的估计。2.试验设计的基本方法2.1全面试验法正交设计的方法,首先应根据实验的目的,确定影响实验结果的各种因素,选择这些影响因素的试验点,进而拟出实验方案,之后按所拟方案进行实验并对实验结果作出评估。必要时再拟出进一步的实验方案,使实验工作更趋完善,所得结果也更为可靠。如在研究某一显色反应

4、时,为选择合适的显色温度、酸度和显色完全的时间,可作如下的试验安排。首先确定上述三因素的实验范围:显色温度:25——35℃(温度以A表示)酸浓度:0.4——0.6mol/L(酸浓度以B表示)显色时间:10——30min(时间以C表示)其次确定每种因素在上述实验范围内各取的水平数(如各取三个水平)。因素A的三个水平分别以A1,A2,A3表示;因素B的三个水平分别以B1,B2,B3表示;因素C的三个水平分别以C1,C2,C3表示;然后将显色试验的因素、水平列为下表。因素水平A温度(t/℃)B酸浓度(C/mol·L-1

5、)C时间(t/min)1250.4102300.6203350.630这是一个三因素三水平的试验问题,对这样的试验工作可做如下的安排。A1B1C1A2B1C1A3B1C1A1B1C2A2B1C2A3B1C2A1B1C3A2B1C3A3B1C3A1B2C1A2B2C1A3B2C1A1B2C2A2B2C2A3B2C2A1B2C3A2B2C3A3B2C3A1B3C1A2B3C1A3B3C1A1B3C2A2B3C2A3B3C2A1B3C3A2B3C3A3B3C3即三因素水平的试验共27种组合(33=27),按上组合方式做

6、完27次试验后自然可得出在所确定的因素和水平下的最佳显色条件。这种全面试验的方法,对事物的内部规律剖析得十分清楚,但却费时费事。假如我们还需要对实验精密度,对试验误差的大小做出估计,则每一试验至少应重复一次。即应做54次实验。如果在讨论六因素而每种因素均取5个水平时,则全面试验的数目是56=15625次,这里还未包括为了给出误差估计所需的重复试验次数,显然这是难以付诸实施的。当考察的因素,水平数越多,在试验中所有可能的搭配也更多,要逐个地进行试验,显然是不可能的。这就提出了合理地设计和安排试验的问题。提出了通过较

7、少量的试验次数以获得理想的实验条件取得最佳的试验效果,并对试验结果做出科学评估的问题。对于上述试验,一种习惯的试验方法是简单比较法。2.2简单比较法这种方法首先固定因素A、B为某一水平(如A1、B1),改变C以获得在A1、B1时C的最佳水平(设为C2,在其下以“--”)。C1A1B1C2C3然后固定A为A1,C为C2,改变B以获得在A1、C2时B的最佳水平(设为B3)B1A1C2B2B3再固定B为B3,C为C2,改变A以获得在B3、C2时的最佳水平(设为A2)。A1B3C2A2A3这样可以认为A2B3C2为较佳的

8、显色条件,即简单比较法经过9次试验也能获得较佳的试验条件,但却存在以下缺点:2.2.1当各因素之间交互影响较大时,A2B3C2不认为是最佳试验条件。2.2.2它未能保证三因素中任何两因素的不同水平之间相碰一次因而上不均衡的,它提供的信息也是不丰富的。2.2.3在不做重复试验的情况下,不能给出误差的估计。如何保持这种方法试验次数少的优点而又能避免上述缺点呢,可采用正交设计的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。