毛管压力曲线应用

毛管压力曲线应用

ID:7860454

大小:137.00 KB

页数:7页

时间:2018-03-01

毛管压力曲线应用_第1页
毛管压力曲线应用_第2页
毛管压力曲线应用_第3页
毛管压力曲线应用_第4页
毛管压力曲线应用_第5页
资源描述:

《毛管压力曲线应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第二章毛管压力曲线的应用第一节压汞法基本原理及应用一、基本原理由于表面张力的作用,任何弯曲液面都存在毛细管压力。其方向总是指向非润湿相的一方。储油岩石的孔隙系统由无数大小不等的孔隙组成,其间被一个或数个喉道所连结,构成复杂的孔隙网络。对于一定流体,一定半径的孔隙喉道具有一定的毛管压力。在驱替过程中,只有当外加压力(非润湿相压力)等于或者超过喉道的毛管压力时,非润湿相才能通过喉道进入孔隙,将润湿相从其中排出。此时,外加压力就相当于喉道的毛细管力。毛细管压力是饱和度的函数,随着压力升高,非润湿相饱和度增大,润湿相饱

2、和度降低。在排驱过程中起控制作用的是喉道的大小,而不是孔隙。一旦排驱压力克服喉道的毛细管压力,非润湿相即可进入孔隙。在一定压力下非润湿相能够进入的喉道的大小是很分散的,只要等于及大于该压力所对应的喉道均可以进入,至于孔隙,非润湿相能够进入与否,则完全取决于连结它的喉道。以上是毛细管压力曲线分析的基础。压汞法又称水银注入法,水银对岩石是一种非润湿相流体,通过施加压力使水银克服岩石孔隙喉道的毛细管阻力而进入喉道,从而通过测定毛细管力来间接测定岩石的孔隙喉道大小分布,得到一系列互相对应的毛管压力和饱和度数据,以此来研

3、究油层物理特征。在压汞实验中,连续地将水银注入被抽空的岩样孔隙系统中,注入水银的每一点压力就代表一个相应的孔喉大小下的毛细管压力。在这个压力下进入孔隙系统的水银量就代表这个相应的孔喉大小所连通的孔隙体积。随着注入压力的不断增加,水银不断进入更小的孔隙喉道,在每一个压力点,当岩样达到毛细管压力平衡时,同时记录注入压力(毛细管力)和注入岩样的水银量,用纵坐标表示毛管压力pc,横坐标表示润湿相或非润湿相饱和度,作毛管压力与饱和度关系曲线—毛管压力曲线,该曲线表示毛管压力与饱和度之间的实测函数关系。通常把非润湿相排驱润

4、湿相称为驱替过程,而把润湿相排驱非润湿相的反过程称之为吸入过程。在毛细管压力测量中,加压用非润湿相排驱岩芯中的润湿相属于驱替过程,所得毛管压力与饱和度关系曲线称之为驱替毛管压力曲线,降压用润湿相排驱非润湿相属于吸入过程,所得毛管压力与饱和度关系曲线称之为吸入毛管压力曲线,在压汞法中,通常把驱替叫注入,把吸入叫退出。压汞法的最大优点是测量特别方便、速度快,测量范围大,测一个样品仅需1-2小时,此外压汞法对样品的形状、大小要求不严,甚至可以测量岩屑的毛细管压力。但压汞法也有很多缺点,例如非润湿相用水银,水银又是在真

5、空条件下压入的,这与油层实际情况差别较大,并且水银有毒,操作不安全。二、应用1.确定油藏原始含油饱和度164当压力达到一定高度后,压力再继续升高,非润湿相饱和度增加很小或不在增加,毛管压力曲线与纵轴近乎平行,此时岩样中的剩余润湿相饱和度,一般认为相当于油层岩石的束缚水饱和度Swi,而此时的非润湿相饱和度即为油藏原始含油饱和度So。2.确定残余油饱和度在注入过程中,压力从零到最高压力,润湿相饱和度从100%降到最小值Smin,而非润湿相饱和度从0到最大值Smax。在退出过程中,压力从最高值降到零,但非润湿相—水银

6、并不完全退出,部分水银因毛管压力作用而残留岩石,非润湿相(水银)在退出时所残余的饱和度(SR),可视为残余油饱和度。3.确定油藏岩石润湿性将一块岩芯分为两半,一块作油驱水,另一块作空气驱油,分别测出两条毛管压力曲线,并求出两曲线的排驱压力Pd(w-o),和Pd(o-g)。用qw-o、qo-g、sw-o、s0-g分别表示油—水和油—空气系统的接触角和表面张力。由于油和空气相比岩石亲油,故可取qo-g=0゜,cosqo-g=1。根据公式pc=2scosq/r,可以写出如下的比例式:W=cosqw-o/cosqo-g

7、=(Pd(w-o)so-g)/(Pd(o-g)sw-o)(2.2.1)比值cosqw-o/cosqo-g称为润湿指数。由于cosqo-g=1,所以,润湿指数越大,岩石越偏向亲水。若W=1,岩石完全亲水;W=0,即Pd(w-o)=0,说明油可以自动吸入岩石,岩石为亲油。应当指出的是,由于pc=2scosq/r形式是定性地应用于油层,所以,W=cosqw-o/cosqo-g=(Pd(w-o)so-g)/(Pd(o-g)sw-o)公式形式上是定量的,实际上仍只能是定性地估计油层的润湿性。这种确定油层润湿性的方法没有得

8、到广泛应用。4.确定低渗透砂岩油藏有效厚度的物性下限曲志浩根据伯格(Berg,.RR.,1975)论述的油气藏二次运移具有水动力影响的基本公式,提出了孔隙喉道的含油下限,孔隙喉道的含油下限半径应为:rtmin=2s/(2s/rp+Zotg(rw-rh))(2.2.2)式中:rtmin:油藏最小含油喉道半径;Zot:油藏最大含油高度。油藏最小含油喉道半径rtmin即为在给定条件下,油气可

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。