动物学知识点总结要点

动物学知识点总结要点

ID:63916959

大小:967.11 KB

页数:91页

时间:2024-01-18

上传者:无敌小子
动物学知识点总结要点_第1页
动物学知识点总结要点_第2页
动物学知识点总结要点_第3页
动物学知识点总结要点_第4页
动物学知识点总结要点_第5页
动物学知识点总结要点_第6页
动物学知识点总结要点_第7页
动物学知识点总结要点_第8页
动物学知识点总结要点_第9页
动物学知识点总结要点_第10页
资源描述:

《动物学知识点总结要点》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

原生动物门商科技名词定义中文名称:原生动物门英文名称:Protozoa定义:一类最低等的真核单细胞动物。原生动物的个体由一个细胞组成,但它是一个能够独立生活的有机体,具有新陈代谢、刺激感应、运动、繁殖等机能。应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);原生动物门(三级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片原生动物门原生动物门(Protozoa)是动物界的1门,为最原始、最简单、最低等的单.细胞动物。原生动物门种类约有30000种。原生动物是单细胞,细胞内有特化的各种胞器,具有维持生命和延续后代所必需的一切功能,如行动、营养、呼吸、排泄和生殖等。每个原生动物都是一个完整的有机体。目录简介研究简史系统发展原生动物门的主要特征生理特征系统分类研究意义简介研究简史 系统发展原生动物门的主要特征生理特征系统分类研究意义展开囹编辑本段简介原生动物分布广泛。自由生活的种类能分布在遮1、胆也(包括淡水、盐水、土壤、冰、雪以及温泉中),甚至在空气中也有原生动物的包囊;至于寄生的种类,则几乎所有的多细胞动物都能被原生动物所寄生,植物也可成为原生动物的宿主;此外还有附生、共生、重寄生的类型。目前已描述的原生动物约6.8万种,其中一半是化石种类,现生种类中,营自由生活的占2/3,寄生生活的占1/3。原生动物门多细胞动物的单个细胞一般不能脱离其他细胞而独立生活,更不能像原生动物那样具有牛命的一切功能。原生动物包括相当多样性的生物类群.在系统发育—过程中它们可通过多种途径进化到多细胞动物。例如海绵动物中就有与领鞭毛虫十分相似的鞭丰细胞;群体的植物性鞭毛虫的团藻虫类开始有细胞间的功能分化——有专司营养和专司繁近的个体,被认为在进化过程中可能是腔肠动物的祖先。人们推测无肠目的涡虫可能起源于原始的多核纤毛虫,从而设想低等的多细胞动物多发性地起源于原生动物的不同类群。编辑本段研究简史300多年前,A.van列文席克用约放大270倍的多镣,第一个看到了很多自由生活和寄生生活的原生动物,他把眼虫描述为“中间绿、两端白”的虫子,后人尊称他为原生动物学之父。 1758年C.von世之应用双名法命名了巨团藻虫,大巨变虫。G.A.戈尔德富斯1817年第一年用Protozoa(原生动物)一词,但他把腔肠动物也包括进去。对原生动物下了正确定义的是C.T.E.von西博尔德(1845)。C.G.埃伦贝格1838年把观察的原生动物进行分类描述,提出初步的分类系统。20世纪初,从原生动物的经典分类研究逐步扩展到生理、营养、生态、遗传等领域。50年代起,由于电子显微镜的应用,使原生动物的研究进入到亚显微结构的水平。近十余年来,应用显微分光光度计、酶化学等方面的新技术,在分子水平•上对原生动物进行微理的研究。同时,通过应用计算机模型,也对原生动物的生态进行了群落级的宏观研究。编辑本段系统发展原生动物是单细胞动物,从原则上讲,在亿万年的发展过程中,首先是由无机物发展到简单的有机物由简单的有机物发展到复杂的有机物,发展成像蛋白质、核酸等那样复杂的大分子,发展出具有新陈代谢机能、但还无细胞结构的原始生命。这是最初的生活物区、生命形态。以后又经过漫长的年代,才由非细胞形态的生活物质发展成为有细胞结构的原始生物。由原始生物近代发展分化出原始的动物和植物。进而发展成现代的形形色色的原生动物。在原生动物这四纲中哪一类是最原始的:过去有些人认为肉足纲变形虫这一类动物是最原始的。因为其结构简单,可是它是吞噬性营养,它需要吃其他原生动物或植物等,所以它不会是最早出现的。纤毛纲结构比较复杂,且为吞噬性营养,也不可能是最早出现的。他子纲的动物全是寄牛的,寄生的种类是由独立生活的种类发展而来的,因此也不可能是最早出现的。只有鞭毛纲具有3种营养方式,因此一般认为鞭毛纲是原生动物中最原始的一纲。在鞭毛纲中到底是哪一类最早出现的这个问题还有争论。过去有些人认为最目出现的是有色鞭毛虫。因为它可以自己制造食物,但因为色素体结构比较复杂,不可能想象最早出现存如此复杂的结构。所以又有些人认为最早出现的不是有色鞭毛虫,而是无色渗透性营养的鞭毛虫,因为无色渗透性营养的鞭毛虫一般构造比较简单,这种说法看来可以被接受。因为物质的发展是由简单到复杂,而在单细胞动物出现以前,已经存在着有机物的条件,当然并不是说由现在的无色鞭毛虫发展来的,而可能是有些类似现在的无色鞭毛虫,假定把它叫做原始鞭毛虫。由原始鞭毛虫经过漫长的岁月,形成现在的形形色色的鞭毛虫。现在有人认为领鞭毛虫是最原始的,它是所有多细胞动物的祖先。肉足纲也是从原始鞭毛虫发展来的,因为很多肉足虫如有孔虫,其配子具鞭毛,根据生物发生津,说明其祖先是具鞭毛的。又某些种类如变形鞭毛虫具鞭毛和伪足,这可说明鞭毛虫与肉足虫亲缘关系密切。纤毛虫可能 是从原始鞭毛虫发展成鞭毛虫的过程中,又分出一支形成的,因为纤毛与鞭毛的结构是一致的说明这二纲的关系较近。抱子纲因全为寄生的,追溯源来源较困难。大致可看出有两个来源如疟原虫、球虫,具配子都具鞭毛,可能来源于鞭毛纲,而粘抱子虫,其营养体全为变形体,可能来源于肉足纲。编辑本段原生动物门的主要特征1、单细胞动物整个身体由单个细胞组成原生动物即单细胞动物。身体微小。具有一般细胞所有的基本结构:细胞膜、细胞核、细胞质、细胞器(线粒体、核糖体、内质网等)。这种单细胞又是一个具有一切动物特性和生理机能的、独立完整的有机体。如具有运动、消化、呼吸、排泄、感应、生殖等机能。以上生理机能是由各种特殊的细胞器来完成的:如:运动胞器纤毛、鞭毛;摄食胞器胞口、胞咽、食物泡;感觉胞器眼点;调节体内水分的胞器收集管、伸缩泡。原生动物的定义:原生动物是一个完整的、能营独立生活的、单细胞结构的有机体。2、原始性无论是形态结构还是生理功能在各类动物中是最简单、最原始的,反映了动物界最早祖先类型的特点。3、有特殊的适应性在不良环境下能形成包裹,在失去大部分结构后缩成一团,并分泌胶质在体外形成包囊膜,使自身与外界环境隔开,新陈代谢水平降低,处于休眠状态。等环境条件良好时又长出相应结构,脱囊而出,恢复正常生活。4、群体单细胞动物特点:由多个单细胞个体聚合而成的群体,但绝大多数群体内的单细胞个体具有 原生动物门(15张)相对独立性。如盘藻、空球藻、实球藻、团藻等。5、营养方式营养方式包括植物性营养、动物性营养、渗透性营养原生动物的形状变化很大。有原生质随意流动、形状不定的变形虫,有结构精巧、宛如雕刻着花纹的工艺品的放射虫和有孔虫。同一种类可因处于生活史的不同时期或不同的环境条件而改变形状。个体大小一般在10微米〜1毫米之间。最小的只有2微米(如寄生在红细胞中的巴倍虫,大的长达19厘米(如早新生代的钱币虫)。1.细胞膜原生质体外面有一层细胞膜,使原生动物和外界环境隔开。任何物质渗入体内或排出体外都必须通过这层细胞膜。植鞭毛纲中的衣滴虫等在细胞膜外还包有细胞壁,但在眼虫则为有弹性的表膜。正是由于这种表膜构造,使大多数原生动物既有比较稳定的形状,又能够行动自如。变形虫的表膜薄,有利于伸出伪足。有些鞭毛虫、肉足虫、纤毛虫有硅质、钙质、纤维质的外壳,人们认为这些外壳的基质是在细胞内形成后再移到表膜外的。2.细胞质一般可分为透明、致密的外质和液态、流动的内质。细胞质中含有各种颗粒(油滴、淀粉、副淀粉、色素等)和各种细胞器(线粒体、高尔基器、溶酶体等)。高尔基器在鞭毛虫中很多,在纤毛虫中缺如或不发达。高尔基器与细胞合成产物的精制、加工和储存有关,如在合尾滴虫、鳞壳虫、放射虫等体表呈图案排列的鳞片,这些鳞片就是在高尔基器的泡囊内形成的,然后这些泡囊移到内质膜,鳞片再按一定的图案排列在体表面。电镜观察揭示大多数纤毛虫的线粒体的内膜向内突入,形成管状的崎,但在一些鞭毛虫是片状或盘状崎,在变形虫和簇虫是泡囊崎。寄生在反刍动物胃 中的厌氧纤毛虫的线粒体是没有崎的囊,肠袋虫的线粒体则是有崎与无崎的混合体。许多植物性鞭毛虫和某些其他原生动物有呈红-紫色的色素颗粒,称为血色素,如雨红球虫、吉尼眼虫、红眼虫、赭虫。天蓝喇叭虫的外质含有1种喇叭色素,因而虫呈蓝色。1.细胞核根据染色质的构造可把细胞核分为泡状核和致密核两类。泡状核常见于肉足虫和鞭毛虫,致密核常见于纤毛虫的大核中。在鞭毛虫、肉足虫、抱子虫中,有的种类有很多细胞核,但都是同型核。许多原生动物在营养期间,细胞核的染色体是多倍体,有些则为二倍体或单倍体。纤毛虫有大、小核之分,小核是二倍体,大核是高度多倍体。大核的大小、形状、数量变化很大,在形状上也各不相同差异很大。大、小核内均含脱氧核糖核酸(DNA。一般地说小核控制细胞的遗传,大核控制细胞的营养,但这不是绝对的。已知大核在遗传上能控制表型,说明大核中也有某些控制遗传的因子。只有大核而没有小核的品系虽然能分裂和生存,但最后还是会老化。在接合生殖过程中,大核退化,由小核产生新的大核,这说明大核虽有自主性,但仍要依赖小核。纤毛虫的核二型性在整个生物界是独特的。鞭毛虫的细胞核与毛基体系统有密切关系。鞭毛的基体有根丝体联系到核上。基体与核在数量上有一定比例。在低等的鞭毛虫中一般为2:1,即2个基体,1个细胞核。随着进化而扩大比例,在超鞭毛目中已是100〜1000:1了。2.色素体及其附属胞器大部分植物性鞭毛虫具有与光合作用有关的色素体和红色的眼点。眼点由1至多个红色小球构成,对光十分敏感,能引导鞭毛虫游向阳光处。色素体有4类:叶绿素、胡萝卜素、叶黄素和藻胆素。由于所含色素体的组成和分量不同,植物性鞭毛虫在颜色上差异很大,有绿、黄、蓝等。有色鞭毛虫如长期处在黑暗而有机质丰富的环境中,色素体和眼点都退色,不再进行光合作用,它们用身体表面的渗透功能吸收营养或直接通过胞口吞入食物(如眼虫)。3.运动胞器与鞭毛虫、肉足虫、纤毛虫相应的运动胞器有鞭毛、伪足和纤毛。抱子虫是寄生的,无专门的运动胞器,借身体的屈曲、滑动等方式移动,仅在生活史中的变形期,其小配子可借伪足和鞭毛运动。鞭毛虫中除超鞭毛虫有许多鞭毛外,一般常为1〜2根,少数有8根。鞭毛是细胞质的丝状突起,通常自身体前端伸出,少数自体侧、腰沟、体后伸出成舵鞭毛。鞭毛还有捕食、附着、感觉的功能。它由两部分组成:中央为1根有弹性的、由若 干平行的纤维组成的轴丝,轴丝外部包着原生质鞘。原生动物中的鞭毛和一切真核生物中的鞭毛一样,是“9+2”的格式(见纤毛、鞭毛)。鞭毛是从表膜下埋在细胞质内的、可染色的毛基体亦称基体,在纤毛虫中称为动基体延伸到体外。一般鞭毛虫有2个基体,位在细胞顶端,但只有一个基体上伸出一根鞭毛,另一个基体是秃的(如低等的锥虫)或有一点鞭毛的痕迹(如眼虫)。在较高等的动鞭毛虫中,基体可有2、6、8甚至数百个不等。在超鞭毛虫中有2000根左右的鞭毛,基体数量总比鞭毛多5个,这5个不长鞭毛的基体在个体发育上具有重要的意义。基体本身不分裂,新的基体在靠近原有的基体处形成。电子显微镜观察证实基体的外周微管排列格式与鞭毛相似,只是在双重体中增加了第3根,成为三重体。在寄生的鞭毛虫中与鞭毛有关的构造还有波动膜、肋、脊突、副基器、副基丝、轴杆、盾、锤、纺锤簇等。鞭毛自顶端向基部作波浪运动,有平面的和螺旋的两种波浪运动形式,均可使虫体向任何方向移动。伪足根据形态可分为小、丝足、根足(又称网足)和轴足四类。伪足除了行动之外,还有捕食、固着、感觉的功能。关于伪足的变形运动已研究了100多年,至今仍未解决。一般认为当变形虫行动时,内质从半液态的溶胶转化为半固态的凝胶,凝胶有收缩性,它对溶胶产生微压,于是溶胶便向最薄弱的地方流去,并形成伪足。因此伪足像个凝胶管,溶胶被迫向管子流去。溶胶达到凝胶管前端接近表膜处就转化为凝胶。在后部收缩的凝胶又转化为新的溶胶。如此不断重复,溶胶不断向前流动,身体后部就不断缩小,结果伪足便增大而成为身体的主要部分,同时前面又不断形成新的伪足。这种变形运动常见于叶足型的种类。丝足、网足、轴足的运动便是另一形式,因为这类伪足很细,中央有较硬的纤维,溶胶像传送带似地沿着纤维向两个相反方向流动。纤毛与鞭毛一样,也是由轴丝和鞘组成,轴丝的亚显微结构也是按“9+2”的格式排列。每根纤毛的基体伸出一细纤维,位于基体的左边,并与同一行列内其他纤毛基体伸出的纤丝相连结,成为纵行的动纤丝。纤毛比鞭毛短而数量多。纤毛有运动、捕食和感觉的功能,而且随分工不同而特化。有的纤毛愈合成小膜,在口缘成带状排列,动作有力而协调,便于将食物_驱入口中。有的纤毛愈合成大的波动膜,突出在口缘之外。在下毛类中,背部纤毛退化,腹部纤毛融合成毛笔状的棘毛。原生动物中运动最快的是纤毛虫。每根纤毛在打水时,分效力击打和恢复击打两种。整个纤毛的协调击打、沿着身体产生4种类型的节律波。1.纤维构造大多数原生动物都有收缩性,有的种类特别明显,如喇叭虫和旋口虫的肌丝,独山柄内的牵缩丝,其收缩性都很强。电子显微镜证明细胞质内都有纤维结构,除了能帮助身体收缩外,还有帮助运动(如簇,虫部纲)、保持体形(如蛙片虫、小瓜虫等)的功能。 1.支持和保护胞器这类胞器是细胞外的构造,如柄、壳、内外骨骼、抱囊、抱子等,这些结构是多细胞动物所没有的。属于内骨骼的如动鞭毛虫的轴杆、肋,放射虫辐射伸出的刺或骨针,裸口类纤毛虫口器内的咽篮、刺杆等,多半是起支持和保护的作用。属于外笆最常见的是在加厚的表膜外有一层保护的壳。壳有几丁质、硅质、硫酸锹等成分,有时还有石灰质沉淀。有的壳是整片的,有的是鳞片状的,有的有精美雕刻的图案。原生动物还能从自体内射出各种突出质,用以进行防卫、攻击和取食。纤毛虫有7种突出质刺丝泡(如草履虫)、粘丝泡(如四膜虫)、毒丝泡(如长颈虫)、系丝泡(在吸管虫的触手上)、纤丝泡(如拟小胸虫)、杆丝泡(如管刺虫)和网丝泡(如栉毛虫)。鞭毛虫中也有刺丝泡和粘丝泡,如腰鞭毛虫有刺丝囊、粘抱子虫有极丝,它们起着固着的作用。2.伸缩泡和其他各种液泡生活在淡水的原生动物有1至多个伸缩泡生活在海水中的和寄生的原生动物一般没有伸缩泡。变形虫只有1个伸缩泡,构造简单,位置不定,伸缩泡的周围有小囊泡,线粒体密度较大。草履虫有前后两个伸缩泡,各有1个中央泡和6根辐射伸出的收集管,收集管上有分枝小管与内质网的管道系统相连。伸缩泡的主要功能是调节渗透压。食物泡根据摄食情况分为两种:含大颗粒食物的吞噬泡和含溶解性营养物质的吞饮泡。食物颗粒或营养物质进入食物泡后,食物泡与细胞质内的溶酶体合并、食物被溶酶体释放的酶消化,未经消化的废物被排出体外。编辑本段生理特征1.繁殖和生命周期原生动物的牛命周期包括牛殖期和徇囊。有些种类已失去形成抱囊的能力。生殖期可分为无性生殖和有性生殖。大多数原生动物无性生殖用二分裂法。鞭毛虫是纵分裂,纤毛虫是横分裂。缘毛类纤毛虫外表看来如纵分裂,但是细胞内各成分(如核、口围纤毛带)仍是横分裂。疟原虫、球虫则行裂体生殖。吸管虫在体内或体外生出许多芽体(出芽)。有些多核的原生动物如胶丝虫、多核变形虫偶尔会分裂成2至数个小的、仍是多核的个体(原生质团分割)。以上4种方式只有出芽生殖还保留亲体,其余均无亲体,后代都是等同的。原生动物有性生殖有3种:融合、接合、自体受精和假配。自体受精与接合生殖相似,但只在一个个体内进行。小核分裂数次,其中有两个配子核融合成合核,其余退化。合核分裂形成新的大、小核。假配与接合生殖一样,要求两个个体接触,但没有配子核的交换, 每个个体完成自体受精过程后各自分开。在草履虫中曾发现过这两种特殊的核现象。寄生原生动物的生活史比较复杂。大多数抱子生活史包括3个时期:裂体生殖期、配子生殖期和抱子生殖期。有明显的无性世代与有性世代的交替。抱子生殖期是由合子产生的抱子母细胞形成抱子后,再进一步形成子抱子。子抱子一般包有外壳,能抵抗不良环境,有利于传布。1.生态因素影响原生动物的环境因子有以下几个方面:①丞金,原生动物不论怎样小也要求有最低限度的水分。②温度,原生动物可生活在地球的两极和冰雪之中,也可生活在温度较高的温泉中,如中国的西藏自治区67c的温泉中,就生活着鲸颌砂壳虫。在实验室内可用冰冻方法保存原生动物,在-95c时梨形四膜虫能生存4个月,寄生的牛胚毛滴虫能生存5年半。天然条件下5〜35c对大多数原生动物是适宜的。③溶解氧,大部分原生动物需要氧气以维持生命活动。但在深水湖的湖底、污水厌氧发酵池中生活的鞭毛虫、纤毛虫是厌氧的,大多数寄生原生动物也是厌氧的。④溶解的二氧化碳,大多数原生动物能耐受低浓度的CO2对植物性鞭毛虫来说,CO2是重要的碳源。⑤pH,在pH值是2.2〜9.2的范围内都可能生存。⑥盐度,原生动物能分布在淡水、咸淡水、海水、盐水中。大多数种类只能生存在一定的盐度范围内,有的种类是广盐性的,利用伸缩泡调节体内的渗透压以适应环境盐度的变化。⑦光,光是植物性鞭毛虫进行光合作用的能量来源。在强光下,团藻虫和眼虫能躲避。在西藏雪山上看到的衣滴虫能产生抵抗强光的保护色素——红色素,致使积雪呈红色。⑧底质、水流、风浪等,放射虫身体中的空泡能扩大和缩小,以调节自身在水中的深度,不致受风浪的吹逐。有一种生活在潮间带水潭内的眼急游虫,其生活习性能符合潮汐的节奏。退潮时水潭露出,眼急游虫游到水面取食、分裂和繁殖。在潮水来到之前,它就到水潭的底部形成包裹。包裹粘于底部,以免被潮水带走。⑨食物和营养,营养方式有植物式、动物式和腐生式3种。大部分寄生原生动物是腐生式营养,近来发现有几种抱子虫能用一种特别的胞口吞食宿主红细胞的细胞质而形成食物泡。止匕外,原生动物还需要某些生长因子如维生素B1、B12、H等。寄生原生动物是从自由生活的原生动物演化来的,在长期适应过程中形态和生理发生了变化,如失去了摄食胞器,增设了固着胞器(吸盘、极丝、柄等),提高了繁殖能力和完善了转移新宿主的途径(从单一宿主发展为中间宿主和储存宿主)。止匕外,原生动物也可被其他生物寄生或与其他生物共生,例如,有孔虫中有寄生的小变形虫,簇虫体内有寄生的微抱子虫,双小核草屉止体内的Kappa粒也是细菌,在许多纤毛虫体内都发现有共生绿藻。 1.变异与遗传基因变异的潜力在双倍体和多倍体的原生动物种群中比单倍体的大,在有性生殖过程中又比无性生殖过程中大。在衣滴虫的不同性和纤毛虫中不同交配型之间进行交叉受精,就能扩大新基因组合的范围。纤毛虫进行接合生殖必须具备两个条件:①两个体必须属于适当的交配型,②其交配型纯系必须是成熟的龄期。在一个种内有数个遗传上相分离的基因群,每个基因群有相同的基因库,但有几个不同的交配型。在同一基因群内的交配型互相接合的几率可达95%已知双小核草履虫有14个基因群,各有两个交配型,绿草履虫有6个基因群,各基因群内有2〜3个交配型。在原生动物中下毛目是进化比较高等的一类,其皮层上有许多按一定格局分布的复杂的纤毛和非纤毛结构。这些结构的遗传是自主性的。纤毛虫纤毛模式决形成和决定很难完全归结为基因对表型的控制作用或是某个基因产物的作用。在皮层和毛基体内至今还没有找到遗传信息的载体DNA分子。因此有人认为遗传性不是核酸分子所能独揽的。编辑本段系统分类一般认为原生动物的祖先是一些古老的“植物-动物”性的类群,称为古代的植鞭毛虫。从古代植鞭毛虫分为几个不同的根株,每个根株上升到现代原生动物的祖先。这是一种多系统的理论。有人认为从古代植鞭毛虫演化为肉足虫。抱子虫是双重起源的,一类起源于肉足虫,一类起源于动鞭毛虫。纤毛虫直接起源于鞭毛虫,只是还说不清楚大、小核的分化和接合生殖的演化。无论哪种观点都是从现代的原生动物中进行推测,缺乏充分的根据。经典的分类把原生动物门分为4个纲——鞭毛虫纲、肉足虫纲、抱子虫纲和纤毛虫纲。随着发现种类的增加,新技术(如电子显微镜等)的应用,分类学家对原生动物传统的分类系统进行了修正。比较一致的有:①鉴于许多鞭毛虫的生活史中有变形期,许多肉足虫的生活史中有鞭毛期,有的种类本身就兼有鞭毛和伪足,所以把两大纲合并为肉鞭动物亚门。②传统的抱子虫纲内有些种类的生活史中并不出现抱子,应当分出来。电子显微镜观察发现某些种类在子抱子或裂殖子时期其顶端有一个复杂的亚显微结构——由极环、类椎体、表膜下微管、微孔、棒状体、微丝组成的顶复体,因而将其独立为顶复动物亚门,与微抱子虫亚门、粘体动物亚门、囊抱子虫亚门并列。③传统的分类中把盘蜷虫类放在肉足纲内。现已证明它的丝网并不是伪足,而是坚硬的、无生命的丝,因而独立为盘蜷动物亚门。下列的分类系统主要参照原生动物学家协会分类和进化委员会主席N.D.莱文于1980年与16位分类学家协商的一个方案。本文把该方案中7个门 下降为7个理工、亚门下降为超纲,在肉足超纲内设有纲、亚纲和总目,原生动物仍作为一个门:原生动物门(Protozoa)肉鞭动物亚门(Sarcomastigophora)鞭毛总纲(Mastigophora)植鞭毛纲(Phytomastigophorea)隐滴虫目(Cryptomonadida)腰鞭目(Dinoflagellida)眼虫目(Euglenida)金滴虫目(Chrysomonadida)异鞭目(Heterochlorida)绿滴虫目(Chloromonadida)定鞭目(Prymnesiida)团藻虫目(Volvocida)溪滴虫目(Prasinomonadida)硅鞭目(Silicoflagellida)动鞭毛纲(Zoomastigophorea)颌鞭目(Choanoflagellida)动体目(Kinetoplastida)原滴虫目(Proteromonadida)曲滴虫目(Retortamonadida)双滴虫目(Diplomonadida)锐滴虫目(Oxymonadida)毛滴虫目(Trichomonadida)超鞭目(Hypermastigida)蛙片总纲(Opalinata)蛙片纲(Opalinatea)蛙片目(Opalinida)肉足总纲(Sarcodida)根足纲(Rhizopodea)叶足亚纲(Lobosia)裸变总目(Gymnamoebidea)变形目(Amoebida)裂矣目(Schizopyrenida)泥生目(Pelobiontida)壳叶总目(Testacealobosidea)表壳目(Arcellinida)毛片目(Trichosida) 微胶丝亚纲(Acarpomyxia)细胶丝目(Leptomyxida)坚胶丝目(Stereomyxida)混胶丝亚纲(Acrasia)混胶丝目(Acrasida)真胶丝亚纲(Eumycetozoia)原星总目(Protosteliidea)原星目(Protosteliida)网星总目(Dictyosteliidea)网星目(Dictyosteliida)胶胚总目(Myxogastridea)棘柱目(Echinosteliida)无丝目(Liceida)有丝目(Trichuda)有钙目(Stemonitida)无钙目(Physarida)原质亚纲(Plasmodiophoria)原质目(Plasmodiophorida)丝足亚纲(Filosia)无壳目(Aconchulinida)网足目(Gromiida)粒网亚纲(Granuloreticulosia)无室目(Athalamida)单室目(Monothalamida)有孔虫目(Foraminiferida)丸壳亚纲(Xenophyophoria)无线目(Psamminida)有线目(Stannomida)辐足纲(Actinopodea)等辐骨亚纲(Acantharia)全射棘目(Holacanthida)粘合棘目(Symphyacanthida)松棘目(Chaunacanthida)节棘目(Arthracanthida)辐射目(Actineliida)多囊亚纲(Polycystinia)泡沫目(Spumellarida)罩笼目(Nassellarida) 稀孔亚纲(Phaeodaria)暗囊目(Phaeocystida)暗球目(Phaeosphaerida)暗瓮目(Phaeocalpida)暗尺目(Phaeogromida)暗贝目(Phaeoconchida)暗树目(Phaeodendrida)太阳亚纲(Heliozoia)结球目(Desmothoracida)太阳虫目(Actinophryida)歹!J足目(Taxopodida)中阳目(Centrohelida)盘蜷动物亚门(Labyrinthomorpha)盘蜷纲(Labyrinthulea)盘蜷目(Labyrinthulida)顶复动物亚门(Apicomplexa)拍琴纲(Perkinsea)拍琴目(Perkinsida)抱子纲(Sporozoea)簇虫亚纲(Gregarinia)原簇虫目(Archigregarinida)真簇虫目(Eugregarinida)新簇虫目(Neogregarinida)球虫亚纲(Coccidia)拟球虫目(Agamococcidiida)原球虫目(Protococcidiida)真球虫目(Eucoccidiida)焦虫亚纲(Piroplasmia)焦虫目(Piroplasmida)微抱子虫亚门(Microspora)二型抱子纲(Rudimicrosporea)异型目(Metchnikovellida)微抱子纲(Microsporea)小抱子目(Minisporida)微抱子目(Microsporida)囊抱子虫亚门(Ascetospora)星徇子纲(Stellatosporea)内生抱子目(Occlusosporida) 孔盖抱子目(Balanosporida)无孑L纲(Paramyxea)无孔目(Paramyxida)粘体动物亚门(Myxozoa)粘抱子虫纲(Myxosporea)双壳目(Bivalvulida)多壳目(Multivalvulida)放射抱子纲(Actinosporea)放射抱子亚纲(Actinomyxia)放射抱子目(Actinomyxida)纤毛亚门(Ciliophora)动基片纲(Kinetofragminophorea)裸口亚纲(Gymnostomatia)前口目(Prostomatida)侧口目(Pleurostomatida)裸口亚纲中位置未定的两个目:原纤目(Primociliatida)核残迹目(Karyorelictida)前庭亚纲(Vestibuliferia)毛口目(Trichostomatida)内毛目(Entodiniomorphida)肾形目(Colpodida)下口亚纲(Hypostomatia)蓝口总目(Nassulidea)合膜目(Synhymeniida)蓝口目(Nassulida)叶咽总目(Phyllopharyngidea)管口目(Cyrtophorida)漏斗目(Chonotrichida)吻毛总目(Rhynchodea)吻毛目(Rhynchodida)后口总目(Apostomatidea)后口目(Apostomatida)吸管亚纲(Suctoria)吸管目(Suctorida)寡膜纲(Oligohymenophorea)膜口亚纲(Hymenostomatia)膜口目(Hymenostomatida) 盾纤目(Scuticociliatida)无口目(Astomatida)缘毛亚纲(Peritrichia)缘毛目(Peritrichida)多膜纲(Polymenophorea)旋毛亚纲(Spirotrichia)异毛目(Heterotrichida)齿口目(Odontostomatida)寡毛目(Oligotrichida)下毛目(Hypotrichida)编辑本段研究意义已知有30种原生动物直接侵袭人体。土壤原生动物能帮助植物碎片分解成有用的腐殖质。有孔虫和放射虫都有完整的化石保存,可用以鉴定地层年龄和划带。它们也是很好的海流水团动力学的指示生物。等辐骨放射虫利用硫酸锹来制造骨骼,因此可作为鉴测海洋放射物质污染的指示生物。原生动物在生物学的细胞、遗传、生理、生物化学等领域中常被用作实验材料。原生动物是动物界重最低等的一类真核单细胞动物,个体由单个细胞组成。与原生动物相对,一切由多细胞构成的动物,称为后生动物。原生动物个体一般微小,绝大多数仅在2-5mm之间。原生动物生活领域十分广阔,可生活于海水及淡水内,底栖或浮游,但也有不少生活在土壤中或寄生在其它动物体内。原生动物一般以有性和无性两种世代相互交替的方法进行生殖。1.意义①已知有30种原生动物直接侵袭人体,至少有1/4的人类因有寄生原生动物而患病。每年有3.5亿人患疟疾,在韭淡L、太平洋群岛、南亚和东南亚地区,每年因患疟疾而致死的约100万人。非洲有一种锥虫引起的非洲睡眠病,急性感染时也能致死。南美洲有700万人因感染锥虫而得卡格斯氏病,使人心力衰竭乃至死亡。利什曼虫引起的黑热病在东南亚、南亚、非洲都有分布,也能引起人死亡。肠道阿米巴病虽很少致死,但阿米巴痢疾能使肝月中大,美国有1/10以上的人患此病。中国五大寄生虫病有两类属于原生动物。90年代以来发现在土壤、水中生活的阿米巴能侵入人的中枢独经,引起原发性阿米巴脑炎。家畜、家禽等肉食动物也有由几十种原生动物引起的疾病。化曲中的寄生球虫使美国损失几亿美元。弓形体病是人和家畜(猪、牛、羊)中最流行的疾病之一。海洋中的红潮就是由腰鞭毛 虫大量繁殖而引起的,它分泌的毒素可杀死或积累于鱼、虾、贝类,人吃后也会引起死亡。有一种金滴虫叫小定鞭虫,能分泌溶血的毒素,在以色列有使鱼大量死亡的报道。②土壤原生动物能促进土壤中有机物质的循环,能帮助植物碎片分解成有用的腐殖质,能改变微生物的群落结构等。③有孔虫和放射虫都有完整的化石保存,可用以鉴定地层年龄和划带,因而成为石油、探矿中的重要指相生物。在海洋方面,它们也是很好的海流水团动力学的指示生物。④等辐骨放射虫利用硫酸锹(SrSO4)来制造骨骼,因此可作为鉴测海洋放射物质污染的指示生物。利用原生动物群落的结构与功能参数可监测、评价和预报水质的污染程度。⑤由于原生动物具有材料易得、大小适中、繁殖期短、容易培养、便于模拟等优点,在生物学的细胞、遗传、生理、生物化学等领域中,它们常被用作实验材料。在反之领域中也常用原生动物追踪抗癌药物在机体中的作用。寄生原生动物应用组织培养以取代天然的宿主,以便准确地观察寄生虫的生活情况,提出更好的防治方法。寻找免疫血清也是研究寄生原生动物的新途径。纤毛虫纯系为防止种群衰老而用接合生殖、自体受精等方式活化细胞核,这对研究人的衰老很有启示。在研究原生动物系统发育方面,提出用生物化学手段解决原生动物的种间关系。在纤毛虫皮层结构非基因控制的遗传现象的研究中,如果能解决机理问题,将是对遗传学的一个新贡献。1.与人的关系原生动物不仅对了解动物演化是重要的,而且和人生的关系也比较密切。比如寄生的种类直接对人有害。还有些对国民经济有直接关系,一些寄生在害虫体内的原生动物,也是研究害虫生物防治的材料。自由生活的原生动物。有些种类能污染水源,造成赤潮危害渔业。另方面,有的种类可以作为有机污染的指标动物。大多数的植鞭毛虫。纤毛虫和少数的根足虫是浮游生物的组成部分,是鱼类的自然饵料。海洋和湖泊中的浮游生物又是形成石油的重要原料。有孔虫。放射虫的壳对地壳形成有意义。因此它们又是探测石油矿的标志。止匕外,原生动物结构较简单,繁殖快,易培养,因此是研究生物科学基础理论的好材料,如眼虫、变形虫、草履虫。生物科学基础理论中,细胞生物学是一个重要的部分,而原生动物本身就是单个细胞,因此在揭示生命的一些基本规律中,原生动物已经显示并将耍显示其更大的科主价值。 多孔动物门囹科技名词定义中文名称:多孔动物门英文名称:Porifera其他名称:海绵动物门(Spongia)定义:最低等、多细胞、几乎是集群的后生动物,也是全部水生族群和固着的滤食者,身体有众多通水的小孔和沟道,骨针有或无。典型者是由两层联系松散的细胞构成体壁,围绕着中央海绵腔所构成管状体,体壁穿有众多的小孔和沟道。除此之外,也有缺乏中央腔而身体穿有众多的孔和沟道的类型。现生的多孔动物见之于海洋或湖泊,化石主要为保存在地质时期沉积岩内的骸体和骨针。生存于寒武纪一现代。应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);多孔动物门(三级学科)以上内容由全国科学技术名词审定委员会审定公布百科名片钙质海绵纲多孔动物门(学名:Porifera)为原始的多细胞生物,也称海绵动物门(Spongiatia或Spongia),一般称为海绵。海绵现在被认为是最原始最低等的水生多细胞动 物,因为它们具备了几乎所有的基本动物特征。其细胞虽已开始分化,但未形成组织和器官,也没有形成真正的胚层(见内胚层、中胚层或外胚层),为二层细胞动物,外面的一层称皮层(扁细胞层),里面的称胃层(襟细胞层)。海绵没有神经系统,但海绵细胞共同捕食、分工消化,所以被认为是动物界器官形成的开始。中文学名:多孔动物门界:动物界拉丁学名:Porifera门.多孔动物门别称:海绵动物门,海绵:Porifera目录简介形态构造组织生理简介形态构造组织生理分类展开图编辑本段简介多孔动物门(Porifera)——海绵动物界的一门。大约5,000种原始多细胞水生动物的统称。除针海绵属(Spongilla)约20种为淡水产外,多孔动物门均分布在海洋的潮间带到8,500公尺(28,000余尺)深处,营固着生活。由于海绵常呈分枝形,而且不会移动,从前被人们当作植物。尺)深处,营固着生活。由于海绵常呈分枝形,而且不会移动,从前被人们当作植物。 多孔动物为原始的多细胞动物,本动物门也称海绵动物门(Spongiatia),一般称之为海绵(Sponge)。海绵是重要的造礁生物,少数属种也有一定的地层意义。编辑本段形态构造多孔动物的外形变化很大,除少数种类外,往往没有对称面,在许多方面与低等植物相似,常被描述为块状、垫状、球状、指状、树枝状、杯状或漏斗状等。一般来说,深海种类的身体常趋于对称,具柄状体,固着在海底软泥上,由一个或成束的强大骨针形成柄或轴,下端深入泥中,上端将海绵体高高托起。有的种类基部有须根状的骨针,将海绵固着在海底上。多孔动物的基本构造,可用单沟型的毛壶为例说明(图1)。毛壶体形如花瓶,辐射对称,体四周的薄壁围绕着中央的海绵腔(原腔),体壁内层覆以排列疏松的领细胞,外层为薄的扁平细胞。体壁穿有无数小孔,称入水孔,顶端开口为出水孔。基部的组织将毛壶附着于适合的物体上。体壁内、外层之间为胶状基质,内有几种能游动的变形细胞。构造较复杂的双沟型是由单沟型多孔动物的体壁呈管状向外辐射皱折而形成,原来成片的领细胞层分割成许多辐管,辐管内的领细胞和海绵腔被隔开。复沟型是大多数多孔动物具有的水沟系,是双沟型具有领细胞的辐管被无数次地皱折、分割,最后领细胞被限制于小的鞭毛室内,海绵体可不断加厚,形成各种各样的体形(图2)。编辑本段组织细胞多孔动物的细胞已初步分化为几种不同功能的组织,但组织中细胞与细胞间并没有严密的关系。 81・山崎t■■*H*t0*c-扁平细胞相当于高等动物的表皮细胞,但它只有一层,覆盖着海绵体的表面和体内的水沟系表面,从正面看为多角形,中央较厚,有一大核;侧面看常呈“丁”字形,具有一定的伸缩性。孔细胞很特殊的海绵细胞。分布于体壁上,圆柱形,中央有一孔,实际上形成管状的细胞,有一层薄的原生质膜覆盖孔的外端,孔细胞将海水引入体内,细胞有高度的伸缩性能调节水流。领细胞圆或椭圆形细胞,整齐地覆盖着鞭毛室的壁,鞭毛和领不断运动,能使体内的水流动,从而自水中获得食物并进行其他生理过程。变形细胞在扁平细胞和领细胞之间,充满胶状体,称中胶层。有许多变形细胞能分化为各种具有特殊功能的细胞,如造骨细胞、领细胞等;未分化的变形细胞能贮存食物和色素等。生殖细胞在生殖期内,领细胞能演变为生殖细胞。造骨细胞有一类变形细胞专门分泌制造各种骨针。小骨针常由一个变形细胞分泌制造,大骨针则由几个或许多变形细胞共同分泌制造。根据骨针性质的不同,造骨细胞可分为钙质造骨细胞、硅质造骨细胞和海绵质造骨细胞等。止匕外,还有能分泌粘液的腺细胞(glandcell),类似其他无脊椎动物肌肉细胞的肌原细胞(myocyte)等。骨针和骨骼多孔动物的骨针有晶体骨针和丝或网状的纤维两种形态。一般晶体骨针中心有一根有机质构成的轴丝, 图1轴丝表面沉积着碳酸钙或氧化硅;钙质海绵只有钙质骨针,六放海绵只有硅质骨针;寻常海绵具有硅质骨针或海绵质纤维,或两者兼有;硬骨海绵兼有硅质和钙质构成的骨针以及海绵质纤维。骨针的化学性质可作为多孔动物门各纲的分类依据。骨针是根据其轴或辐来分类,一般可分为:单轴骨针、三辐骨针、四辐骨针、五辐和六辐骨针、多辐骨针和球状骨针等几种(图3)。骨骼中的矿物质含量占海绵体重的大部分。编辑本段生理多孔动物没有特别分化的消化、排泄和呼吸等器官,其生理过程都是由各种细胞和水流接触时各自直接进行,它的排泄物直接排到水流中。鞭毛室里千百万个领细胞的鞭毛作有规则的螺旋式运动,激动着水朝一个方向流动,使其从入水孔进入鞭毛室和其他管道,最后从出水口流出体外。多孔动物是无选择过滤食性动物,食物是由流入体内的水携带而来。在实验室观察到它们能摄取细菌、淀粉、奶粉、洋红等颗粒,并测得它能吞食的最大食物直径达50微米。原生质构成的触手状领将食物颗粒附着,随后推入领细胞内进行消化,或由领细胞传给临近的变形细胞并在变形细胞内消化。再生多孔动物具有很强的再生能力,同类多孔动物的身体紧密接触时,常出现彼此组织互相愈合的现象。生殖 多孔动物能进行有性和无性生殖,雌雄同体,雌性和雄性细胞往往不同时成熟,这样可以避免自体受精。多孔动物没有特化的生殖腺,生殖细胞(即卵和精子)由领细胞演变而成,演变时领和鞭毛消失,细胞移入领细胞层内,作变形运动,由营养细胞供应所需的营养。卵在体内受精并进行卵裂,各种多孔动物的生殖期尚不清楚。胚胎发生受精卵有规律地分裂到32个细胞(囊胚)以后,卵裂就开始不规律地进行。囊胚呈卵圆形,一端扁平,一端钝圆。中央腔通过一端的开口与外界相通,称孔。在周围的细胞和已经从其他细胞分化出来的细胞内,有许多颗粒内含物,另一部分细胞排列成半球形,有长鞭毛,颗粒细胞迅速增多,陷入中央腔内,同时胚胎以其鞭毛的活动移入最近的鞭毛室,经出水口离开母体。碗状凹陷的胚胎吸收水分,很快膨大成卵圆形。这时的多孔动物体称两囊幼体,其中一个囊的细胞具有发亮的色素和长的鞭毛,另一个囊的细胞为圆的、有颗粒的细胞。所有多孔动物都具两囊幼体期,幼体以其纤毛自由游泳数日后,开始沉入海底,有纤毛的一端附着在适合的物体上,开始附着生活(图4)。这时,多孔动物有两层细胞,原来具有颗粒的细胞在外层,具有鞭毛的细胞在内层。不久,鞭毛细胞产生一圈原生质的触手状领,变成领细胞;进入两层之间的颗粒细胞演变成具有各种功能的变形细胞,这时多孔动物的幼体称为厚海绵,随后长大为成体多孔动物。虽然各种多孔动物发生的具体过程略有不同,但都经过上述各阶段。无性生殖常以出芽和芽球进行。这在分布很广的荔枝海绵中常可见到。芽球在淡水多孔动物中很普通。芽球离开母体后,次年春天会在适合的环境中发育成新的多孔动物。海绵动物组织原始,无真正消化腔和神经系统。海绵动物的细胞虽有分工,但彼此合作甚微,如将海绵磨碎过筛,其中分离了的细胞仍能存活数大(相当于原生动物)。但若彼此不再结合,就不能继续生存下去,海绵动物这种即独立又合作的特征,表明其有机体结构仍属细胞级,显示了原始多细胞动物的特点。海绵动物多为群体,单体较少。身体呈辐射对称或不对称。群体的外形变化很大。单体一般作角锥形、盘形、高脚杯形、球形等。大小变化由数毫米到2m之间。多数具有钙质、硅质或角质骨骼。海绵动物的骨骼有骨针(海绵针)、海绵丝(骨丝)和非骨针型的矿物质三种。骨针成分为钙质(方解石、文石)或硅质(蛋白石)。骨针按大小可分为大骨针和小骨针。海绵丝的成分是角质的有机化合物,呈丝状,分枝或交接在一起。海绵丝易腐烂,不易形成化石。海绵动物除了个别的科没有骨骼之外,其他所有的种类都是具有骨骼的,骨骼是海绵动物的一个典型特征,是用以分类的重要依据之一。海绵 动物的骨骼有骨针(spicule)及海绵丝(sponginfiber)两种类型,它们或散布在中胶层内,或突出到体表,或构成网架状。骨骼具有支持及保护身体的功能。骨针的成分或是由碳酸钙组成钙质骨针,或是由SiO2-Nh2O组成硅质骨针,其中还都可能包括微量的铜、镁、锌等离子。骨针按其大小又可分为大骨针(megasclere),构成支持身体的骨架;及小骨针(microsclere),它散布在中胶层内,以支持体壁中的管道部分。小骨针仅存在于硅质海绵中。从形态上骨针可以分为多种,其中常见的有:(1)单轴骨针(monaxons),即沿一个轴生长形成的骨针,轴或直或弯,轴的两端或相似或不相似,末端或尖或具有其他改变;(2)四轴骨针(tetraxons),也称四放骨针(quadriradiate),这种骨针在一个平面上有四个放射端,但常因丢失一些放射端而变成三放、二放或一放型,三放骨针是钙质海绵纲动物中最普通的一种骨骼;(3)三轴骨针(triaxons),它的三个轴相互以直角愈合,因而呈六放型(hexactinal),这种也常减少末端而改变放数,其末端可以弯曲、分枝、或具钧、具结等变化而形成了多种形态;(4)多轴骨针(polyaxons),由中心向外伸出多射,形成星壮,这种类型多见于小骨针。不同种的海绵,各种骨针或彼此分离,或按一定结构形成疏松的或坚实的网架以支持身体,因此可根据骨针的类型、数量及排列而作为海绵动物分类的依据。海绵丝是一种纤维状骨骼,它是由硬蛋白(scleroprotein)组成,它们或单独的存在于海绵动物体壁内,或与硅质骨针同时存在。许多小的硅质骨针埋在海绵丝中,形成有效地支持物。许多大型群体海绵常同时存在着这两种骨骼。海绵动物的骨针及海绵丝都是由中胶层中的变形细胞特化形成的造骨细胞所形成。单轴的钙质骨针是由一个造骨细胞分泌形成,骨针形成时,造骨细胞核先分裂,并在双核细胞的中心出现一个有机质的细丝,然后围绕这一细丝沉积碳酸钙,随着骨针的逐渐增长,双核细胞也分成两个细胞,并分别加长骨针的两端,最后形成一个单轴骨针。同样,三轴骨针是由三个造骨细胞聚集在一起,每个细胞也随着有机质细丝的形成而分裂一次,形成六个细胞,碳酸钙围绕有机质细丝沉积愈合的结果形成了一个三轴型骨针。海绵丝是由许多造骨细胞联合形成,先是由少数细胞形成分离的小段,然后再愈合成长的海绵丝。在寻常海绵纲动物中,这些海绵丝再相互联结形成网状骨架。海绵的生殖有无性和有性两种。现代海绵除普通海绵纲中少数类型属淡水海绵外,多数是海生动物,营底栖固着生活。现代石海绵和钙质海绵多分布于浅海地带,但玻璃海绵可栖居在深达6000m的深海中。化石海绵 也大体要求相似的水深。海绵在不同的地质时代常和层孔虫、苔碎虫和藻类在一起形成礁体。编辑本段分类依据骨骼成分及水沟系类型,可分为以下:■普通海绵纲(Demospongea)•玻璃海绵纲(Hyalospongea)•钙质海绵纲(Calcispongea)•硬海绵纲(Sclerospongea)普通海绵纲(Demospongea)普通海绵纲本纲骨骼为硅质骨针或海绵丝,或两者都有。骨针通常是互成60o角或120o角度,四轴针、单轴针或网结针,没有六射三轴针。水沟系为紧密的复沟型。寒武纪至现代。ArchaeoscyphiaHinde(古钵海绵)玻璃海绵纲玻璃海绵纲(Hyalospongea)又称六射海绵纲(Hexactinellida),形体大,骨骼全由硅质骨针组成,无海绵丝。典型的大骨针多为六射三轴针,互成直角,故又称六射海绵纲。此外还有四射双轴针等。骨针往往连接形成立体格架。小骨针呈六射星状或双盘状。简单复沟型,鞭毛室大;某些古生代种类还有单沟型。元古代晚期至现代。ProtospongiaSalter(原始海绵)HydnocerasConrad(刺角海绵)AstraeospongiumRoemer(星骨海绵)ChancelloriaWalcott(张腔海绵) 钙质海绵纲钙质海绵纲(Calcispongea)单体或群体海绵。钙质骨针,无海绵丝。骨针有双射、三射和四射,分散或相接,异音叉状的三射针最为特征。双沟型为主,少数为单沟型或复沟型。寒武纪至现代。化石较少。AmblysiphonellaSteinmann(专屯管海绵)硬海绵纲硬海绵纲(Sclerospongea)1970年哈特曼(Hartman)和戈罗(Goreau)根据发现于牙买加现代礁体裂隙中的一类特殊的海绵建立的。这类珊瑚形的群体海绵,具有文石组成的层状骨骼,并含硅质单射单轴针。 腔肠动物门囹求助编辑百科名片腔肠动物门腔肠动物门(Coelenterata)又称刺胞动物门。除极少数种类为淡水生活外,绝大多数种均为海洋生活,大多数在浅海,有些在深海,现存种类大约有11000种。目录简介主要特征主要分纲系统发生与人类的关系腔肠动物门(化石)简介主要特征主要分纲系统发生.与人类的关系腔肠动物门(化石)展开囹编辑本段简介腔肠动物在动物界中的地位:腔肠动物是后生动物的开始,所有其他后生动也都是经过这一阶段发展起来的。 编辑本段主要特征辐射对称辐射对称即通过身体的中央轴有许多切面可以把身体分成相等的两部分。腔肠动物的模式图是一种原始的对称方式,适应固着和漂浮生活,定向运动能力差。一些种类(例如珊瑚纲)已经发展出两辐射对称。两种基本的结构类型,即水蛇型(polyp)和水母型(medusa)。二胚层,原始消化腔腔肠动物是真正的二胚层动物(内、外胚层)。在两个胚层之间有中胶层。体内的腔,即胚胎发育中的原肠腔,兼有消化和循环的作用,又称消化循环腔。有口无肛门。口为原口,有摄食和排遗的功能。兼有细胞内消化和细胞外消化。有组织的分化上皮组织占优势,由它形成体内外表面,并分化为各种细胞,包括:上皮肌肉细胞(简称皮肌细胞)、腺细胞、问细胞、感觉细胞、刺细胞等。刺细胞刺细胞是腔肠动物所特有的一种攻击和防卫性细胞。分布在外胚层细胞中,以口区、触手上最多,但在钵水母纲及珊瑚纲的内胚层上也有大量分布,以帮助捕食。每一个刺细胞有一囊状的刺丝囊,囊中有毒液及盘绕的刺丝,刺细胞外侧常有一刺针,能接受刺激,受刺激时刺丝连同毒液能立即射出,使对手麻醉或死亡。 腔肠动物神经网动物界里最简单最原始的神经系统。没有神经中枢,神经冲动的传导一般是不定向的,被称为扩散神经系维。神经冲动的传导速度比较慢。世代交替世代交替指的是在动物的生活史中,无性世代与有性世代有规律地交替出现的现象。水蛇纲和钵水母纲的大部分种类存在世代交替现象。营固着生活的水蛇体为无性世代;营自由生活的水母体为有性世代。水蛇体以无性生殖(出芽或横裂)产生水母型个体,水母体以有性生殖的方式产生水蛇型个体。两种世代有规律的相互交替。珊瑚纲的全部种类以及水蛇纲、钵水母纲的少数种类一生只有水蛇型或者水母型,但是也具有有性生殖和无性生殖,只是二者并不交替进行。多态现象水蛇纲中有许多营群体生活的种类含有营养体与生殖体两种形态与机能完全不同的个体,这种现象称为二态现象。群体中如果包括两种以上不同形态与机能的个体,则称为多态现象。其生物学意义是群体中个体之间的劳动分工,通过群体中个体的形态分化来担任不同的生理机能,使得群体成为一个有机的整体。 编辑本段主要分纲水蝇纲(Hydrozoa)钵水母纲(Scyphozoa)珊瑚纲(Anthozoa)水蛇纲(hydrozoa)本纲动物绝大多数海产,少数生活在淡水中。腔肠动物的淡水种类均属于本纲。单体或群体生活。大部分种类生活史中有水蛇型和水母型,或同时存在于群体中形成二态或多态,或交替出现形成世代交替;少数种类只存在水蛇型或水母型。・:I!faff腔肠动物的模式图常见种类有水蛇(Hydra)、筒蛇(Tubularia)、薮枝虫(Obelia)、桃花水母(Craspedacusta)、钩手水母(Gonionemus)、僧帽水母(Physalia)等。钵水母纲(Scyphozoa)本纲动物全部海产。生活史主要阶段是单体水母,水母型构造比水蛇水母复杂,水蝇型不发达或完全消失,且常常以幼虫的形式出现。代表种类有各种大型水母,如:海月水母(Aurelia)、海萤(Rhopilema)。珊瑚纲(Anthozoa)珊瑚纲是腔肠动物门最大的一个纲,全部海产。全部是水蛇型的单体或群体动物,生活史中没有水母型世代。珊瑚纲的水蛇型结构较水蛇纲复杂,身体为两辐射对称。常见种类如红珊瑚(Coralliumrubrum)、细指海葵(Metridium)、海仙人掌(Cavernularia)。编辑本段系统发生腔肠动物是真正多细胞动物的开始。从其个体发育看,一般海产的腔肠动物都经过浮浪幼虫阶段、由此可推测: I-*腔肠动物门最原始的腔肠动物是能自由游泳、具纤毛、形状象浮浪幼虫的动物,即W契尼柯夫假想的群体鞭毛虫,细胞移入后形成原始二胚层动物(原始的水母型),发展成腔肠动物。在现存的腔肠动物中,水蛇纲无疑是最低等的一类,因为其水蛇型与水母型的构构都比较简单,生殖腺来自外胚层。钵水母纲水蛇型退化,水母型发达,结构较复杂。珊瑚纲无水母型,只有结构复杂的水蛇型。后两纲的生殖腺又都来自内胚层,因此认为,钵水母纲和珊瑚纲可能起源于水蛇纲,沿着不同的途径发展而来的。编辑本段与人类的关系有些种类有食用价值,有些可治疗疾病。毒素可作为新的药物开发研究。可用于地质学和油气勘探。珊瑚礁是全球生物多样性最为丰富的生境之一,为其他动物的生存提供了多种环境。仿生学,例如模仿水母的感觉器一触手囊的风暴预报仪器,能提前15小时作出准确预报。是生命科学研究的实验材料,用于探讨发育和进化等问题。观赏价值。有些种类刺细胞分泌的毒液对人的危害较大,可造成严重创伤。有些钵水母对渔业生产有害。编辑本段腔肠动物门(化石)肠动物是有了明确组织的真后生动物,因它们身体中央具有营消化、循环等功能的腔而得名。腔肠动物化石在前寒武纪即已出现。原水母纲以布鲁克斯水母(图1几种水母化石 腔肠动物的模式图)为代表,其体形变化大,一般呈星椭球状,最早出现于寒武纪晚期至奥陶纪,在约1.5亿年后的石炭纪又出现;分布于北美、欧洲和北非,在中国也有分布。侧水母纲以狄更逊水母(图1几种水母化石)为代表,其身体呈椭圆形钟状,两侧对称,化石稀少,仅见于澳大利亚的下寒武统。因其具两侧对称的特征,现在被认为可能是蠕形动物或原始节肢动物。钵水母纲又称真水母纲,以游水母(图1几种水母化石)为代表,伞状,化石最早发现于美国科罗拉多大峡谷的前寒武系砂岩,止匕外,如型L、地四、捷克斯洛伐克的中寒武统,加拿大和美国的上寒武统,但区的二叠系和侏罗系中也曾发现。锥石亚纲——锥石类,外壳由角质、有机质或磷灰质薄层组成,常保存为化石,生存于晚寒武世至二叠纪,少数种可能生活于三叠纪和侏罗纪。锥石类化石不多,但分布广泛。珊瑚虫纲是本门中最丰富也最重要的一类动物,由于软体顶部具有许多能收缩和伸张的触手,外形似花而得名(拉丁学名可直译为花状动物)。珊瑚化石的骨骼结构十分精细,形态多样,美如群花,人们常加工为装饰品、工艺品,而古生物工作者把它们作为划分和对比古生代地层的重要依据之一。珊瑚的种类甚多:①皱珊瑚,又称四射珊瑚,体外表有皱纹,隔壁(骨骼之一)在原生6个隔壁后,每轮增加4个隔壁,有单体及复体之分,它们的骨骼易石化而保存在碳酸盐岩地层中,由于演化迅速生长快,分布也十分广泛,从奥陶纪开始出现至二叠纪绝灭。腔肠动物的模式图 ②异珊瑚,骨骼结构简单,体形很小,从泥盆纪至石炭纪分布在亚洲和欧洲。③六射珊瑚,隔壁从6个方向辐射生长,种类特多,形态如花群,是理想的装饰品,也是造礁动物之一,从中三叠世开始出现至现代还存在,一般分布于地球赤道附近的海域。④八射珊瑚,体内的8个隔膜形成隔壁,骨骼由钙质或角质骨针组成(图2八射珊瑚的骨骼形状),主要生存于中生代至现代,化石稀少,地层意义不大。腔肠动物化石的地史分布比较长、种类多、演化快、在地层对比上具有一定作用。 环节动物门互科技名词定义中文名称:环节动物门英文名称:Annelida定义:无脊椎动物的一个门,具真分节,裂生真体腔,多具疣足或刚毛的蠕虫状动物,多为潜穴者,分布于海洋、淡水、土壤中,少数寄生,如沙蚕、蚯蚓、蚂蛾等。应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);蠕形动物(三级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片环节动物门动物界的一个门、为两侧对称、具分节白^裂体腔的动物。已描述的约13000种,常见种类有蚯蚓、蚂螭、沙蚕等。体长从几毫米到3米。栖息于海洋、淡水或潮湿的土壤,是软底质生境中最占优势的潜居动物。+丹心々环节动物界:动物界中又子名:门门.环节动物门拉丁学名:Annelida,Annelida主要特征环节动物门的分类环节动物系统发育 环节动物与我们人类的关系国内部分研究概况形态构造生殖和发生意义主要特征环节动物门的分类环节动物系统发育环节动物与我们人类的关系国内部分研究概况形态构造生殖和发生展开囹编辑本段主要特征身体分节(metamerism)环节动物身体分成许多形态形似的体节。体节之间有双层隔膜存在,各节内形成小室。神经、排泄、循环系统按体节重复排列。存在下面两个情况:环节动物门同律分节:除前两节和最后一节外,其余各体节在形态和功能上基本相同,如蚯蚓。异律分节:有些种类,身体各节在形态和功能上有明显不同,如沙斶形成真体腔(truecoelom)体腔是由中胚层形成时出现的中胚层体腔囊发育而来的。第一次出现的体腔是线形动物的假体腔。而真体腔是由体壁中胚层和肠壁中胚层围成的腔。真体腔是由中胚层囊裂开而成的,故也称裂体腔。真体腔是继假体腔之后出现的,也称次牛体腔。真体腔的形成在动物进化上的意义: ①消化道在形态和功能上进一步分化,消化能力加强。②加西能加强一同化功能加强一异化功能加强一排泄功能加强,排泄器官从原肾管型进化为后肾管型。③真体腔形成过程中残留的囊胚腔形成血管系统,从环节动物开始出现完善的循环系统。④为身体出现分节现象提供了基础。出现刚毛和疣足形式的附肢刚毛:由表皮细胞内陷形成的刚毛囊内的毛原细胞分泌形成,是寡毛纲的运动器官。疣足:是体壁的向外突起中空,与体壁相通疣足本身不分节,与躯体连接处也无关节,是多毛纲的运动器官。闭管式的循环系统环节动物的循环系统是一种较高级形式的闭管式循环系统、由纵血管、环血管及微血管组成,血液始终在血管中流动。索式神经系统体前端咽背侧由一对咽上神经节愈合成脑,左右由一对围咽神经与一对愈合的咽下神经节相连,由此向后伸的腹神经索纵贯全身。整体形似索式,故称索式神经。排泄器官为后肾管型典型的后肾管为一条迂回盘曲的管子一端开口于前一体节的体腔称肾口,具有带纤毛的漏斗,另端开口于本体节的体表为肾孔,排泄物直接从肾口进入管内,效率更高。担轮幼虫(trochophore)陆生和淡水生活的环节动物直接发育,不经过幼虫期,海产种类个体发育出现担轮幼虫期。海产种类经螺旋式卵裂、囊坯,以内陷法形成原肠_胚,发育成担轮幼虫。幼虫呈陀螺形,体中部具2圈纤毛环,分别称前担轮和后担轮。纤毛之中有口。担轮幼虫有很多原始的特点,如无体节、具原肾管、靠纤毛运动。到幼虫的后期逐步变态,形成体节和真体腔,并产生后肾管。担轮幼虫经游泳后沉入水底发育为成虫。编辑本段环节动物门的分类 环节动物门全球已报道种类数约有17000种。分布在我国的种类数大约有1470种。海水淡水及陆地均有分布,少数营寄生生活(花索沙蚕科Arabe一llidae)。本门可分为多毛纲(Polychaeta)、寡毛纲(Oligochaeta)和蛭纲(Hirudinea)三个纲。多毛纲(Polychaeta)多毛纲是环节动物中最多的及比较原始的一类,有10000多种。除极少数种类外,均为海洋底栖生活。常见的种类如变叁(Nereis)、沙斶(Arenicola)、巢沙蚕(Diopatra)等。多毛类一般有发达的头部及感觉器,具疣足,雌雄异体,无生殖环带,发育中经过担轮幼虫。寡毛纲(Oligochaeta)寡毛纲包括常见的蚯蚓、颤蚓等一类动物,一般认为寡毛类是由海产穴居的原始环节动物侵入淡水及陆地而发展起来的一支,它们以明显的特征独立于多毛类:身体分节但不分区,疣足退化,体表具刚毛,但刚毛的数目远远少于多毛类,故名。寡毛纲种类约有6700多种。蛭纲(Hirudinea)本纲动物俗称蛭或蚂蝗,营暂时性外寄生生活。体背扁平,体节固定,一般34节,后7节愈合成吸盘。故体节可见27节。每体节又分为数体环。头部不明显,常具眼点数对,无刚毛。体前端和后端各具一吸盘,称前吸盘和后吸盘,有吸附功能,并辅助运动。次生体腔退化,血体腔系统代替了血循环系统,为开管式循环。消化系统结构特化,如吸血性蛭类,口腔内具3片处,上有齿,咽部具有单细胞唾液腺,能分泌蛭素,能抗凝血,溶解血栓。蛭类为雌雄同体、异体授精,有交配现象具生殖带。蛭类大部分栖于淡水中,少数陆生或海产,约有500种,我国已报道5科25属62种。编辑本段环节动物系统发育环节动物一方面表现了原始的呼吸(多靠湿润的体表、简单的鲤)和运动机制,另一方面蠕虫状的外形与扁形动物相似,通常认为环节动物起源于扁形动物涡虫纲,但其消化、循环和排泄系统趋于完善复杂、神经系统更集中,因而又是比上述动物更进化的类群。分节作为节肢动物的分部(头、胸、腹部)的基础,疣足作为节肢动物的的此雏型以及中枢神经系统上的相似性,又说明了环节动物与节肢动物之间的关系。 编辑本段环节动物与我们人类的关系有益方面多毛纲:沙蚕等,一般海产,大多数可作为鱼的饵料环节动物门寡毛纲:多是陆生或水生的蚯蚓,具有重要的作用,如医药、保健、饵料。蛭纲:日本医蛭、鱼蛭、金线蛭等,俗称蚂蝗,寄生或半寄生,蛭素具有医药作用。有害方面多毛纲:一些多毛类附着外物上生活,如龙介虫、螺旋虫等,危害血想等人工养殖业,为沿海污损生物;附着船底影响船的航速;有的腐蚀贝类,如沙蚕、矶沙蚕,才女虫等。寡毛纲:寡毛类中的水蚓类都可作为淡水鱼类的饵料,但它们繁殖过多时,可损害鱼苗或堵塞输水管道。蛭纲:蛭类的吸血习性,对人类和家畜危害很大,蛭类吸血的伤口血流不止,易感染细菌,引起化脓溃烂等。有的还可在动物体内营内寄生生活,造成更大危害。编辑本段国内部分研究概况1.谢志才、梁彦龄、王洪铸,中国科学院水生生物研究所武汉,玛利安蚓属一新种:环节动物门寡毛纲线蚓科,动物分类学报2000/022.邱江平、王海军、陈畅、李银生,上海交通大学农业与生物学院上海西蚓属蚯蚓的因子对应分析(寡毛纲:正蚓科),上海交通大学学报2004/053.张永普、吴纪华、孙希达,温州师范学院生物系中国科学院水生生物研究所杭州师范学院生物系,中国海蚓属蚯蚓(寡毛纲:舌文蚓科)一新种,中国远环蚓属蚯蚓(寡毛纲:巨蚓科)一新种,长白山杜拉属蚯蚓一新种(寡毛纲:链胃蚓科),四川动物1998/011997/011996/03 1.陈强、冯孝义,兰州大学生物系兰州医学院,双蜕腔蚓的生殖器官多态现象(寡毛纲:巨蚓科),动物分类学报1996/042.孙瑞平、杨德渐,中国科学院海洋研究所青岛海洋大学,中国近海盘管虫属(多毛纲:龙介虫科)的研究I,中国近海龙介虫科(多毛纲:缨鲤虫目)的研究II,中国近海龙介虫科和螺旋虫科(多毛纲:缨鲤虫目)的研究田,海洋科学集刊20013.杨潼,中国科学院水生生物研究所武汉,福建省福清海滩大弹涂鱼寄生鱼蛭一新种(蛭纲:吻蛭目:鱼蛭科),动物分类学报2002/02编辑本段形态构造分节性身体由若干相似而沿其前后轴重复排列的体节或环节构成。相邻体节间外部有环形沟或体环、内部以隔膜分界。蛭纲体节数恒定均为34节,其他环节动物5〜1000体节不等。身体分为头部、躯干部和肛部:头部_位于身体前端,多由口前叶和围口节组成;躯干部位于头部和肛部之间。肛部具mi,位于体之后端由1节或若干节组成。环节动物的分节性既表现在体表,也表现在体内的重要器官(排泄器官、血管、生殖腺、神经节等)上。疣足和刚毛除大部分蛭类外,多具上皮刚毛囊细胞产生的几丁质刚毛。寡毛类刚毛较少,成对或成环直接着生于体壁;多毛类刚毛较多,且成束,多位于疣足叶上。疣足为躯干部体节侧生的叶片状肉质突起,形态多样,典型的疣足为双叶型。自由运动的多毛类多具发达的疣足和刚毛,以利运动、游泳或锚走、摄食、感觉和呼吸。体壁和消化管住蹙(外管)由角质层、单层柱状上皮、不发达的基膜、外环肌层、内纵肌层和壁体腔膜组成完整或不完整的皮肤肉囊;消化管由脏体腔膜、纵肌层、环肌层和肠上皮组成。壁体腔膜和脏体腔膜间所包围的腔隙即真体腔,经体腔管开口于体外。体腔分室环节动物发生时具若干分节排列的中胚层带,由此发展为真体腔。相邻的体腔由隔膜隔开,并经隔膜上的孔相通。有的种隔膜次生地部分或全部消失。体腔分室对环节动物的适应有重要作用。分室的液压骨骼液压骨骼的基本结构是个两端封闭的筒,筒壁具坯皿、纵肌层,筒内充满液隹。当纵肌收缩时,体腔液产生侧向压力,虫体遂变宽缩短,疣足和刚毛锚在穴壁上;当环肌收缩时,体腔液产生从前到后的张力,虫体变长且向前运动。由于环节动物体腔分室,液压作用于局部体节,体形长短变化可限于一定体节,这就大大提高了液压骨骼的效率。因此,环节动物爬行、游泳、穴居的能力甚强。与其他低等蠕虫(息匕、纽比、4)相比,环节动物的器官系统更集中。体壁中胚层和真体腔的分室使环节动物强化了液压骨骼,提高了环节动物的运动摄食力;脏壁中胚层分化为肠壁肌(加强了消化道的机械消 化力和肠道的蠕动)以及肠血管丛(提高了对营养物质的吸收);闭管式循环系统以及具收缩力的背血管和心脏的分化,能使血液沿血管快速定向输送营养物质、气体和含氮废物;原肾为两端开口的后肾所替代加强了排泄功能;神经系统由脑(咽上神经节)、围咽神经环、咽下神经节和各体节的神经节组成,链式神经系统的出现,使中枢神经的功能更加集中。编辑本段生殖和发生寡毛纲、蛭纲雌雄同体,生殖腺分布于固定体节中,有与生殖关联的复杂的附属器官,性成熟后具特殊的腺状体节(环带),雄性先熟,异体交配受精,具卵茧,且直接发育;多数多毛纲动物常无固定的生殖腺,无环带亦无交配现象、生殖产物直接排放在水中,受精卵经螺旋卵裂发育成倒梨形的担轮幼虫。担轮幼虫多经过一段浮游期,逐渐变态沉落海底(底栖多毛类)。编辑本段意义环节动物可提高土壤肥力,有利于改良土壤。可促进固体废物还原;可供做饵料,增加动物蛋白质,可作为环境指示种;可用于医疗和入药;另外,有的是有害的海洋污着生物。 软体动物门科技名词定义中文名称:软体动物门英文名称:Mollusca定义:是仅次于节肢动物的第二大门类。身体柔软不分节,一般可分为头、足、内脏团和外套膜四部分。具口的头部位于身体前端。除双壳类外,其他各类软体动物口腔内有颗片和舌齿。应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);软体动物门(三级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片的L歌值就的仪网■式图1眼之触角3胸神暖至<齿舌5则冲母节6是孑耗专节7平海用8是9I。魁神通带HUH12妙13经厘14外套履15哥融U心及17心篁18生理的19贝壳前胃21HKZ2号液龄23外宾展软体动物体制模式图化出来的一支。中文学软体动物名:门二名法:Mollusca界:动物界软体动物门:(Mollusca)物种类繁多,生活范围极广,海水、淡水和陆地均有产。已记载130000多种,仅次于节肢动物,为动物界的第二大门。软体动物的结构进一步复杂,机能更趋于完善,它们具有一些与环节动物相同的特征:次生体腔,后肾管,螺旋式卵裂,个体发育中具有担轮幼虫等,因此认为软体动物是由环节动物演化而来,朝着不很活动的生活方式较早分门:软体动物门Mollusca分布区从寒带、温带到热带从海洋到河川、湖泊从平原到高域:山,到处可见目录简介结构特征头部足部内脏囊外套膜贝壳系统器官神经系统 感觉器官消化系统呼吸系统循环系统排泄系统生殖系统生活习性浮游生活游泳生活底栖生活主要纲无板纲(Aplacophora)多板纲(Polyplacophora)单板纲(Monoplacophora)掘足纲(Scaphopoda)瓣鳃纲(Lamellibranchia)喙壳纲(Rostroconchia)腹足纲(Gastropoda)头足纲(Cephalopoda)进化经济意义有益方面有害方面简介结构特征头部足部内脏囊外套膜贝壳系统器官神经系统感觉器官消化系统呼吸系统循环系统排泄系统生殖系统生活习性浮游生活游泳生活底栖生活 主要纲无板纲(Aplacophora)多板纲(Polyplacophora)单板纲(Monoplacophora)掘足纲(Scaphopoda)瓣鲤纲(Lamellibranchia)喙壳纲(Rostroconchia)腹足纲(Gastropoda)头足纲(Cephalopoda)进化经济意义有益方面有害万面展开囹编辑本段简介软体动物门(Mollusca)软体动物门是动物界中仅次于节肢动物门的第二大门。该门动物身体柔软,左右对称,不分节,由头部、足部、内脏囊、外套膜和贝壳等五部分组成。因大多数软体动物体外覆盖有各式各样的贝壳,所以通称贝类。该门动物共分8纲,有10余万种,分布广泛,从寒带、温带到热带,从海洋到河川、湖泊,从平原到高山,到处可见,例如鲍鱼、宝贝、田螺、蜗牛、蛆、牡蛎、文蛤、章鱼、乌贼等。由于软体动物大多数贝壳华丽,肉质鲜美,营养丰富,又较易捕获,因此远在上古渔猎时期,就已被人类利用,其中不少可供食用、药用、农业用、工艺美术业用,也有一些种类有毒,能传播疾病,危害农作物,损坏港湾建筑及交通运输设施,对人类有害。编辑本段结构特征头部位于身体前端。一些行动迟缓的原始种类头部不发达,仅有口,与身体没有明显的界限,如石鳖等;一些穴居或固着生活的种类体躯完全包被于外套膜和贝壳之内,头部退化,如蚌类、牡蛎等;一些比较进化、运动敏捷的种类头部发达,分化明显,生有触角和眼等感觉器官,如田螺、蜗牛及乌贼等。足部足部是位于身体腹侧的运动器官,随生活方式不同呈现不同形式:有的种类足部蹦面平滑,适于在陆地或水底爬行,如腹足纲;有的种类足部呈斧刃状,有利于挖掘泥沙,如瓣鲤纲;有些固着生活的种类足退化,如牡蛎科;也有些种类足部萎缩,失去了运动功能,但有足丝腺,能分泌足丝,用以附着在外物上生活,如贻贝科、扇贝科等。在头足纲,足生于头部,有的特化成腕,上面生有许多吸盘,为捕食器官,并有一部分变态成漏斗,适于游泳生活,如乌贼和章鱼等。少数种类足的侧部(即侧足,parapodium)特化成片状,可游泳,称为翼或鳍,如翼足目(Pteropoda)。足部通常生有平衡器,有些种类在足的上部生有许多触手。内脏囊位于身体背部,包括胃、肠、消化腺、心脏、肾脏、生殖腺等内脏器官,为外套膜和贝壳所包被。多数种类的内脏囊为左右对称,但有的扭曲成螺旋状,失去了对称形,如螺类。外套膜是身体背部皮肤皱褶向腹面延伸面形成的一种保护器官,由内、外表皮、中间的结缔组织和少数肌肉纤维组成。外套膜与内脏之间有外套腔,外套腔内有鳃和口、肛门、肾脏、生殖腺的开口。外套膜的边缘构造很复杂,常具各种形状的触手,有的种类有外套眼。外套膜 内表皮细胞具纤毛,纤毛摆动,造成水流,使水循环于外套腔内,借以完成呼吸、排泄、摄食等。左右2片套膜在后缘处常有一二处愈合,形成出水孔(exhalantsiphon)和入水孔(Inhalantsiphon)。有的种类出入水孔延长成管状,伸出壳外称为出水管和入水管。贝壳体外具贝壳为软体动物的重要特征,因此研究软体动物的学科又称贝类学(Malacology)。贝壳由外套膜分泌的钙质和有机质形成。大多数种类有1扇贝壳,如腹足纲、掘足纲,也有不少种类有2扇贝壳,如瓣鳃纲,很少数种类有8扇贝壳,如多板纲;也有一些种类贝壳退化成内壳,有的无壳。贝壳的形态随种类变化很大,有的呈帽状;螺类为螺旋形;掘足纲为管状;瓣鳃纲为瓣状,这是区分种类的重要特征之一。贝壳的成分主要是碳酸钙和少量的壳基质(conchiolin,或称贝壳素)构成。贝壳的结构一般可分为3层:最外一层为角质层(periostracum),很薄,透明,有光泽,由壳基质构成,不受酸碱的侵蚀,可保护贝壳;中间一层为壳质层(ostracum,又称棱柱层,primaticlayer),占贝壳的大部分,由角柱状的方解石构成;最内一层为壳底(hypostracum,即珍珠质层,perallayer),富光泽,由叶状霰石(aragonite)构成。外层和中层为外套膜边缘分泌形成,可随动物的生长逐渐加大,但不增厚;内层为整个套膜分泌而成,可随个体的生长而增加厚度。珍珠就是由珍珠质层形成的。当外套膜受到微小砂粒等异物侵人刺激,受刺激处的上皮细胞即以异物为核,陷入外套膜的上皮之间结缔组织中,陷入的上皮细胞自行分裂形成珍珠囊,囊即分泌珍珠质,层复一层地将核包位逐渐形成珍珠。据史料记载公元前2200多年,我国就有淡水育珠的记载(《书经禹贡篇》),广西合浦育珠自古就很有名,采摘开始于汉代。角质层和壳质层的生长非连续不断的,由于食物、温度等因素影响外套膜分泌机能,故贝壳的生长速度是不同的,因此在贝壳表面形成了生长线,表示出生长的快慢。编辑本段系统器官神经系统软体动物中,原始种类的神经系统无神经节的分化,仅有围咽神经环及向体后伸出的一对足神经索(pedalcord)和一对侧神经索(pleuralcord);较高等种类的神经系统由4对神经节和与之联络的神经构成:脑神经节(cerebralganglion)1对,位于食道背侧,派出神经至头部和体前部,司感觉;足神经节(pedalganglion)1对,位于足的前部,派出神经至足部,司运动和感觉;侧神经节(peuralganglion)1对,位于体前部,派出神经至外套膜和鳃等;脏神经节(visceralganglion)1对,位于体后部,派出神经至内脏诸器官。各对神经节之间有横的神经联合,各不同神经节之间亦有神经连索,这些神经节的排列和神经联合以及神经联索的长短随类别不同而异。原始的种类没有显明的神经节,神经系统主要由围绕食道的环状神经中枢和由它派生的2对神经索构成,如单板纲。在腹足纲、瓣鳃纲和掘足纲等较进化的种类,神经节分化明显;而在高等的头足纲,各神经节均集中在头部形成脑,外有软骨包围。感觉器官软体动物已分化出触角、眼、嗅检器及平衡囊等感觉器官,感觉灵敏。触角的数目和形状各类不同:新碟贝有2个口前小触角;腹足纲前鳃亚纲有1对头触角;肺螺亚纲有2对触角,其中1对大触角起嗅觉作用。后鳃亚纲的嗅角、头足纲的嗅觉陷,都与肺螺亚纲的大触角相似。在瓣鳃纲,外套膜边缘、水管触手都有感觉细胞起触觉作用。1、眼:软体动物眼的构造,从最简单的色素凹陷直到复杂的具晶体和网膜结构的都有。眼通常1对,位于头部两侧,有的生于触角顶端。头部不发达或头部退化的类群无头眼,但石鳖类的贝壳表面有微眼,瓣鳃纲很多种类有外套眼。 2、平衡囊:除双神经类外,其他类群都有平衡囊,位于足部,左右各1个,由足部皮肤内陷而形成。原始的种类囊内具耳沙,演化的种类则具耳石,在耳沙或耳石的刺激下,动物能测定行动的方向和保持身体的平衡。平衡囊受脑神经节的控制。3、嗅检器:是水生软体动物用来检验水流中沉积物质量和水的化学性质的器官,受脑神经节派出的神经控制。消化系统软体动物的消化系统包括口、食道、胃、肠、肛门和附属的腺体。口为一简单的开口或具较发达的肌肉。瓣鳃纲口的周围有发达的唇瓣;头足纲有口膜;除瓣鳃纲外,口腔内均有颚片(mandible)和齿舌(radula)。在腹足纲,或是仅有1个颚片位于背面,或是有2个位于口腔两侧,在头足纲,有2个颚片分别位于口腔的背腹面,颚片可辅助捕食。齿舌是软体动物特有的器官,位于口腔底部的舌突起(odontophore)表面,由排列成行的角质齿构成,似挫刀状。摄食时以齿舌作前后伸缩运动刮取食物。齿舌的形态,包括小齿的形状、数目和排列方式因类而异,为区分科属的依据之一。小齿组成横排,许多排小齿构成齿舌。每一横排有中央齿一个,左右侧齿一或数对,边缘有缘齿一对或多对。齿舌上小齿的排列以齿式表示,如中国圆田螺(Cipangopaludinachinensis)的齿式为2.1.1.1.2。口腔内有唾液腺的开口,口腔向下为食道,食道常形成嗉囊。食道也有附属腺体,如腹足类的勒布灵腺、毒腺等。食道向下为胃,胃通常为一花卵形口袋,其内壁有强有力的收缩肌。在腹足纲的被鳃亚目中,有些种类的胃壁生有咀嚼板。在裸鳃亚目中,有的种类具成行的几个质齿。在瓣鳃纲的胃中,常有1个幽门盲囊,其中有晶杆。胃内有主要消化腺肝脏的开口。胃的后部为肠,胃肠之间常有1个瓣膜分开。肠的末端为直肠,有的种类在直肠内有附属的肛门的开口。软体动物的消化管发达,少数寄生种类(内寄螺,Entocolax)退化。呼吸系统水生软体动物用鳃呼吸。鳃是由外套膜内面的上皮伸展形成的。鳃的形态各异,包括鳃轴和鳃丝。有的种类鳃轴两侧均生有鳃丝,呈羽状,称盾鳃;有的种类仅鳃轴一侧生有鳃丝,呈梳状,称栉鳃(ctenidium);有的鳃成瓣状,称瓣鳃(lamellibranch);有些种类的鳃延长成丝状。称丝鳃(filibranch)。有的本鳃消失,又在背侧皮肤表面生出次生鳃(secondarybranchium),也有的种类无鳃。鳃轴与动脉和静脉贯通,通过鳃的污浊血液即进行气体交换。鲤的数目和形态随类别而异,成对或为单个,在单板纲为5或6对,多板纲为6〜88对,原始的腹足类为1对,较高级的种类为1个,瓣鳃纲为1对,头足纲为2对或1对。陆生软体动物均无鳃,在外套腔内部一定区域形成微细血管密集的肺室,可直接摄取空气中的氧。这是对陆地生活的一种适应性。循环系统循环系统由心脏、血管、血窦(bloodsinus)及血液组成。循环系统的中枢为心脏,心脏位于身体背部的围心腔(pericardinalcavity)中,有一个心室和根据类别不同有1个、2个或4个心耳。心室壁厚,能博动,为血循环的动力;心耳常与鳃的数目一致。心耳与心室间有瓣膜,防止血液逆流。血管分化为动脉和静脉。血液自心室经动脉,进入身体各部分,后汇入血窦,由静脉回到心耳,故软体动物的循环系统一般为开管式循环,但在较高等的头足纲,动脉管和静脉管内的微血管联络成为闭管式循环。血液无色,内含有变形虫状细胞。血液中一般含血清素,血液呈青色。仅瓣鳃纲中的蚶和腹足纲的扁卷螺科有血红素,血液呈红色。软体动物的次生体腔极度退化,残留围心腔及生殖腺和排泄器官的内腔。初生体腔则存在于各组织器官的间隙,内有血液流动,形成血窦。排泄系统软体动物的肾脏呈囊状,由具纤毛的肾管形成,肾管的一端与围心腔相通,另一端在外 套腔中开口,不仅输送集于围心腔中的废物,而且能滤出血液中的废物一并排出体外。肾脏在单板纲为6对;在多板纲、瓣鳃纲、原始腹足纲以及头足纲的二鳃类为1对;在四鳃类为1对;高等的腹足纲只有1个。除肾脏外,腹足纲、瓣鳃纲和头足纲的许多种类的围心腔壁上的腺体亦有排泄作用。腹足纲后鳃亚纲的肝脏的一部分也是重要的排泄器官。软体动物的排泄器官基本上是后肾管,其数目一般与鳃的数目一致,只有少数种类的幼体为原肾管。后肾管由腺质部分和管状部分组成,腺质部分富血管,肾口具纤毛,开口于围心腔;管状部分为薄壁的管子,内壁具纤毛,肾孔开口于外套腔。后肾管不仅可排除因心脏中的代谢产物,也可排除血液中的代谢产物。另外围心脏内壁上的围心脏腺,微血管密布,可排除代谢产物于围心脏内,由后肾管排出体外。生殖系统软体动物的生殖系统由生殖腺、生殖输送管、交接器和一些附属腺体构成。生殖腺由体腔壁形成。生殖输送管内端通向生殖腺腔,外端开口于外套腔或直接开口于体外。软体动物有雌雄异体和雌雄同体之分。雌雄异体的种类包括多板纲、绝大多数的前鳃亚纲和瓣鳃纲、头足纲等,它们有的通过交尾受精,有的将生殖产物分别排到水中受精。雌雄同体的种类包括无板纲、后鳃亚纲、肺螺亚纲以及少数的前鳃类和瓣鳃纲,它们大多通过交尾受精。软体动物的受精卵是典型的螺旋型卵裂,由外包或内陷或由二者形成原肠胚,原肠胚形成后,很快发育为自由游泳的担轮幼虫。个别种类从担轮幼虫直接发育成成体,但大多数种类从担轮幼虫发育成面盘幼虫(veligerlarva),然后才发育成成体。担轮幼虫的形态与环节动物多毛类的幼虫近似,面盘幼虫发育早期背侧有外套的原基,且分泌外壳,腹侧有足的原基,口前纤毛环发育成缘膜(velum)或称面盘。大多数的海产腹足类的担轮幼虫在卵袋中度过,一些前鳃类和淡水腹足类、肺螺类的担轮幼虫和面盘幼虫都在卵袋中度过。在淡水中生活的蚌类,面盘幼虫特化为适应寄生生活的钩介幼虫(glochidium),这种幼虫在鱼类的鳃、鳍或其他部位寄生,在鱼体上形成胞囊。幼虫从寄主身体获取营养,逐渐发育成成体,破囊而出,沉落水底营底栖生活。头足纲的卵子分裂属子不完全分裂的盘状分裂类型,为直接发育。编辑本段生活习性软体动物的生活习性因种类而异。腹足类在陆地、淡水和海洋均有分布,瓣鳃纲只生活在淡水和海洋中,其他类群则完全生活在海洋中。它们的生活方式有:浮游生活营这种生活的种类都是随波逐流地在海洋中过漂浮生活。一般个体较小,贝壳很薄或没有贝壳。有的种类足特化成鳍,如翼足类和异足类中的许多种。有的种类由足分泌一个浮囊携带动物在海洋中漂浮,如海蜗牛。由于它们是随波逐流的,所以分布范围与海流有密切关系,例如中国近海浮游软体动物的分布受台湾暖流的影响很大,暖流势强时分布靠北,暖流势弱时分布靠南。 游泳生活营游泳生活的种类能和鱼类一样在海洋中长距离河游,例如头足纲的乌贼、枪乌贼、章鱼等,它们的足特化成腕和漏斗,胴部两侧产生鳍,靠漏斗喷水和鳍的作用可以迅速平稳地游动。某些瓣鲤纲(如扇贝、日月贝、锂蛤等)虽然不过游泳生活,但在必要时,可凭借贝壳的急剧开闭和外套触手的作用在海中作蝶式游泳。底栖生活绝大多数的软体动物营底栖生活。它们在水底匍匐爬行,或在底质上固着。有的种类营底上生活,例如鲍、蜒螺、田螺、织纹螺、红螺等在岩石或泥沙滩表面爬行;贻贝、扇贝等用足丝附着在海底岩石或其他外物上;牡蛎、猿头蛤、海菊蛤等用贝壳固着在海底外物上。有的种类营底内生活,例如很多瓣鲤纲(蛤、蛤蝌、乌蛤、攫蛤、竹蛭等)靠发达的足部挖掘泥沙,把身体整个埋于底内栖息,靠水管与底表沟通。许多穿孔种类在木材、岩石、贝壳、珊瑚礁等坚硬的底质中生活,例如石蛭、海笋、开腹蛤穿凿岩石、贝壳等,马特海笋和船蛆穿凿木材。4、寄生生活:有的为外寄生,如圆柱螺寄生于棘皮动物腕的步带沟中;有的为内寄生,如内壳螺寄生在锚海参的食道内。编辑本段主要纲无板纲(Aplacophora)为软体动物中的原始种类,体呈蠕虫状。细长或短粗,无贝壳。体表被具石灰质细棘的角质外皮,头小,口在前端腹侧,躯体细长,腹侧中央有一腹沟,有的种类沟中有一小形其纤毛的足,有运动功能.体后有排泄腔,多数种类在腔内有一对鲤,腔后为肛门、无板类无触角、眼等感觉器官:肠为直管状,齿舌有或无;心脏为一心室一心耳,血管系统退化,雌雄同体或异体,个体发生中有担轮幼虫期。无板纲包括新月贝目和毛皮贝目等两目,约有200多种,生活在低潮线下数10米至深海海底,肉食性分布遍及全球。我国南海海域79米深处曾采得龙女簪一种。多板纲(Polyplacophora)全部生活在沿海潮间带,常以足吸附于岩石或藻类上。体呈椭圆形,背稍隆,腹平。背侧具八块石灰质贝壳,多腰里期....■欧苒*若曹,工昭是覆瓦状排列、前面一块半月形,称头板(cephalicplate),中间6块结构一致、称中间板(intermediateplate),末块为元宝状,称尾板(tailplate)。各板间可前后抽拉移动,因此动物脱离岩石后,可以曲卷起来。贝壳周围有一圈外套膜,称环带(girdle),其上丛生有小针、小棘等,形态各异、头部不发达,位腹侧前方,圆柱状,有一向下的短吻,吻中央为口。足宽大,吸附力强,在岩石表面可缓慢爬行。足四周与外套之间有一狭沟,即外套沟,在沟的两侧各有一列盾鲤,六对或数十对。约有1000种,我国沿海习见种类有毛肤石鳖体型较大,环带上有成丛的白色针束;鳞带石鳖壳片高,头板具放射肋。包括鳞侧石鳖目、锂石鳖目和毛肤石鳖目等三目。 单板纲(Monoplacophora)绝大多数为化石种,已绝灭了近4亿年。有一个帽状或匙形的贝壳,有2〜8对对称的肌痕。1952年丹麦海洋研究船在太平洋沿岸哥斯达黎加3570m深海处第一次采得生活标本,1957年被定名为新碟贝(Neopilinagalathealemche),以后又在大西洋、印度洋等处发现了一些种类。新碟贝是一类原始的贝类,体为两侧对称,具一近圆形而扁的贝壳,腹足强大,周缘肌肉发达,中央簿,故无吸附能力,仅适于在海底滑行。缩足肌8对,分节排列于足的周围。足四周为外套沟,两侧共有鳃5或6对。足前端为口,后端为肛门。口前有一对具纤毛的口盖(velum),口后有扇状触手一对。心脏位围心腔内,由一心室及2对心耳构成;肾6或7对;雌雄异体,生殖腺2对,有生殖导管开口于肾,生殖细胞由肾排出体外。神经系统由围食道神经环及向后伸出的侧神经和足神经组成。这类被称为活化石的原始贝类的发现,对研究贝类的起源与演化提供了新的资料。掘足纲(Scaphopoda)全海产。具长圆锥形稍弯曲的管状贝壳,如象牙状。粗的一端为前端,开口大。称为头足孔;细的一端为后端,开口小,称为肛门孔。壳凹的一面为背侧,凸的一面为腹侧。外套膜呈管状,前后端有开口。头部不明显,前端具有不能伸缩的吻,吻基部两侧生有许多头丝(captacula),能伸缩,末端膨大。头丝可伸出壳外,有触觉功能,也可摄食。掘足纲为肉食性,吻内为口球,具颚片和齿舌。足在吻的基部之后,柱状,末端三叶状或盘状。足可伸得很长,能挖掘泥沙。肛门开口于足的基部腹侧。无鳃,以外套膜进行气体交换。循环器官心脏一室无心耳,未分化出血管,仅有血窦。肾一对,囊状,位胃侧面。雌雄异体,生殖腺一个;个体发生中有担轮幼虫和面盘幼虫。掘足纲自潮间带至4000米深海都有分布,约300种仅2科。角贝壳呈象牙状,足圆锥形,末端有二冀状侧叶。该纲动物在我国分布广,种类多。瓣鳃纲(Lamellibranchia)全部生活在水中,大部分海产,少数在淡水,极少数为寄生,如内寄蛤(Entovalva)、恋蛤(Peregrinamor)等。约有2万种,分布很广。一般运动缓慢,有的潜居泥沙中,有的固着生活,也有的凿石或凿木而栖。包括古列齿亚纲(Palaeotaxodonta)、隐齿亚纲(Cryptodonta)、翼形亚纲(Pteriomorphia)、古异齿亚纲(Palaeoheterodonta)异齿亚纲(Heterodonta)、异韧带亚纲(Anomalodesmata)等。喙壳纲(Rostroconchia)在形态上最接近于瓣鳃纲,但它们在壳体发育的最初阶段只有一个生长原点,形成一个原壳,以后再发育成为具双壳形态的成年壳体,其壳层连续地通过背部两侧,折转成双壳形,因而不象真正的瓣鳃纲那样有可活动的两壳背部接合线,是一类具有“假双壳”形态的单壳软体动物。此外,这类动物没有瓣鳃纲常见的韧带和铰合构造,具有不同的肌肉系统等,也都是区别于瓣鳃纲的主要特征。包括利培壳目、强壮壳目、锥鸟壳目等三目,全部为化石种。腹足纲(Gastropoda)软体动物中最大的一类,有10万种以上。生活在海洋、淡水及陆地,分布遍及全球,少数种类为寄生,如内寄螺(Entocolax)、光螺(Melanella)、内壳螺(Entoconcha)等。除翼足类外,头部都很发达,具有一对或两对触角,一对眼。眼生在触角的基部、中间或顶部。口内的齿舌发达,用于摄食、钻孔。足位于躯体的腹面,一般用于爬行、游泳,有时借足的收缩而跳跃。除少数种类外,多具一枚外壳。外壳多呈螺旋形,雌雄同体或异体,卵生。水生者用鳃呼吸,陆生种类的呼吸代之以外套膜表面,起肺作用。腹足纲的贝壳极为发达,变化多样。有的为外壳,有的为内壳,有的贝壳完全退化。一般为螺旋形,左旋或右旋。足部常能分泌一个角质的或石灰质的厣掩盖壳口,起保护作用。包括前鳃亚纲(Prosobranchia)、后鲤亚纲(Opithobranchia)、肺螺亚纲(Pulmonata)等。 头足纲(Cephalopoda)全部海产,肉食性。体左右对称,分头、足、躯干三部分。头部发达,两侧有一对发达的眼,原始种类具外壳,多数为内壳或无壳;足着生于头部,特化成腕和漏斗,故称头足纲。漏斗位于头腹面、头与躯干之间。羽状鳃一对或2对,心耳和肾的数目与鳃一致。具软骨。口腔有颚片和齿舌。神经系统集中,感官发达。闭管式循环系统。直接发生。头足纲现存种类约有700种,化石种类在10000种以上。包括鹦鹉螺亚纲(Nautiloidea)、内角石亚纲(Endoceratoidea)、珠角石亚纲(Actinoceratoidea)、菊石亚纲(Ammonoidea)、鞘形亚纲(Coleoidea)等。另外,可能归入软体动物门、但分类位置未定的有竹节石纲(Tentaculita)和软舌螺纲(Hyolitha)两纲。编辑本段进化软体动物的海产种类个体发生中为螺旋型卵裂,且具有担轮幼虫,排泄器官为后肾管,这些特点均与环节动物尤其是多毛类近似。故有理由认为软体动物和环节动物在系统发生中有着共同的起源,在长期进化中,朝着不活动的生活方式发展,因而体节消失,产生了贝壳,运动器官和神经感官均趋于退化。软体动物中单板纲、无板纲及多板纲较为原始,这几类的次生体腔发达,近似梯式神经;有的体呈蠕虫形,无壳,许多器官如鳃、肾、外壳等显不出分节排列现象。这些原始性状的存在认为它们接近软体动物的原始祖先,各自独立发展一支。腹足类较为原始,其生活方式活跃,头部发达。瓣鳃纲生活方式不活动无头,但原始种类具盾鳃,足部具趾面,这与腹足纲接近。掘足纲头不明显,套膜在胚胎时为2片,后才愈合呈筒状,成对的肾,脑神经节与侧神经节分开,这些表明接近于原始的瓣鳃类、但掘足类无鳃,无心脏,贝壳筒形,又显示与其他纲动物在演化上较为疏远,可能是较早分出的一支。头足纲为一古老的类群,起源早,化石种类多。它们生殖腔与体腔相通,似无板纲;个体发生中在胚胎早期无肾,似多板纲和无板纲;生殖导管来源于体腔导管又似多板纲。由于头足纲其有原始软体动物的特点说明它们与软体动物的原始种类接近。但头足纲有机结构,复杂神经系统高度集中,且为软骨质包围;眼的结构似脊椎动物,基本为闭管式循环系统;直接发生,无幼虫期。由于头足纲既有原始性状,又有高度的进化特征,故推测它们可能很早分出的一支,沿着更为活跃的生活方式发展的一个独立的分支。编辑本段经济意义软体动物中有很多种类可以为人类所利用,有益于人类,但也有许多种类对危害人类常造成经济上的损失。有益方面1、食用价值:海产的鲍鱼、玉螺、香螺、红螺、东风螺、泥螺、蚶、贻贝、扇贝、江珧、牡蛎、文蛤、蛤仔、蛤蜊、蛏、乌贼、枪乌贼、章鱼,淡水产的田螺、螺蛳、蚌、蚬,陆地栖息的蜗牛等肉味鲜美,含有丰富的蛋白质、无机盐和维生素,具有很高的营养价值。2、药用价值:鲍的贝壳(中药称石决明)可以治疗眼疾;宝贝的贝壳叫“海巴”,能明目解毒;珍珠是名贵的中药材,有平肝潜阳、清热解毒、镇心安神、止咳化痰、明目止痛和收敛生机等作用;乌贼的贝壳叫“海螵蛸”,可以治疗外伤、心脏病和胃病,以及止血;蚶、牡蛎、文蛤、青蛤等的贝壳也是中药的常用药材。从鲍鱼、凤螺、海蜗牛、蛤、牡蛎、乌贼等可以提取抗生素和抗肿瘤药物。3、农业价值:产量多的小型软体动物可以做农田肥料或饲料,例如中国沿海出产的寻氏肌蛤、鸭嘴蛤、篮蛤等可以喂猪、鸭、鱼、虾,淡水产的田螺、河蚬可以饲养淡水鱼类。4、工业价值:软体动物的贝壳是烧石灰的良好原料,中国东、南沿海各地有许多贝壳 烧灰窑,为建筑用石灰提供一部分来源。珍珠层较厚的贝壳(如蚌、马蹄螺等)是制钮扣的原料。5、工艺价值或装饰价值:很多贝类的贝壳有独特的形状和花纹,富有光泽,绚丽多彩,各种宝贝、芋螺、凤螺、梯螺、骨螺、扇贝、海菊蛤、珍珠贝等是古今中外人士喜欢搜集的玩赏品。有些贝类,如蚌、贻贝、鲍、唐冠、瓜螺等是制作螺钿、贝雕和工艺美术品的原料。6、地学价值:软体动物在地质历史时期中有很多可作为指示沉积环境的指相化石。在世界和中国寒武系的最底部,已有单板纲和其他软体动物化石出现,中生界的不少菊石成为洲际范围内划分、对比地层的带化石,有些可用以了解古水域温度和含盐度等;蜗牛化石能反映第四纪气候环境。有害方面1、对农业的危害:陆生的蜗牛,蛞蝓等吃植物的叶、芽,危害蔬菜、果树、烟草等;海洋中的一些肉食性种类,如玉螺、荔枝螺、红螺等,能杀害牡蛎、泥蚶等的幼苗,造成养殖瓣鳃纲的损失;一些草食性种类(如齿螺、锈凹螺、海兔等)常吃海带、紫菜的幼苗,是藻类养殖的敌害。2、人、畜传染病的媒介:在淡水和陆生的软体动物中,有一些种类是人类或家畜传染病的媒介,例如椎实螺是肝片吸虫的中间宿主,豆螺是中华分枝睾吸虫的中间宿主,扁卷螺是姜片虫的中间宿主,短沟蜷是肺吸虫的中间宿主,钉螺是日本血吸虫的中间宿主,对人类的危害十分严重。3、对港湾建筑和交通运输的危害:海洋中的船蛆、海笋等是专门穿凿木材或岩石穴居的种类,对于海洋中的木船、木桩和海港的木、石建筑都有危害。特别是船蛆,对海洋里的木材危害十分严重。营附着或固着生活的种类(如贻贝、牡蛎等)常大量附着在船底,可以影响船只的航行速度。有些附着生活的种类(如饰贝、贻贝、沼蛤等)生活在沿海、沿江、湖工厂的冷却水管系统中,可以堵塞水管,影响生产。[1] 节肢动物门囹科技名词定义中文名称:节肢动物门英文名称:Arthropoda定义1:种类最多的一个动物门。应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);节肢动物门(三级学科)定义2:体具环节,体壁骨化,并有分节附肢的动物。应用学科:昆虫学(一级学科);昆虫分类与进化(二级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片75-80%。节肢动物门是动物界最大的一门,通称节肢动物,包括人们熟知的虾、蟹、蜘蛛、蚊、蝇、娱蚣以及已绝灭的三叶虫等。全世界约有110〜120万现存种,占整个现生物种数的节肢动物生活环境极其广泛,无论是海水、淡水、土壤、空中都有它们的踪迹。有些种类还寄生在其他动物的体内或体外。…节肢动物T%中文名称:1由动物门界:E、界外文名称:Arthropoda目录外部形状结构特点形态特征身体分部附肢分节具有发达的横纹肌体被含有几丁质的外骨骼呼吸系统多样性具混合体腔和开管式循环系统具两种类型的排泄器官神经系统和感官器官身体分布生长繁殖主要特征分类系统原节肢动物亚门真节肢动物亚门亚门19纲系统组成循环系统 消化系统呼吸系统神经系统价值外部形状结构特点形态特征身体分部附肢分节具有发达的横纹肌体被含有几丁质的外骨骼呼吸系统多样性具混合体腔和开管式循环系统具两种类型的排泄器官神经系统和感官器官身体分布生长繁殖主要特征分类系统原节肢动物亚门真节肢动物亚门亚门19纲系统组成循环系统消化系统呼吸系统神经系统价值展开囹编辑本段外部形状1、一般均为两侧对称,身体是异律分节,即身体的若干体节分别组成不同的部分,如分头、胸、腹3部或 节肢动物门头部与胸部愈合为头胸部,或胸部与腹部愈合为躯干部,也有头、胸、腹3部分整个愈合在一起的。2、体节可能消失,各部机能不同。如头部司感觉和摄食,胸部司运动,腹部司代谢等。3、除身体分节外,附肢也分节,附肢有双枝型和单枝型两类,各部分的附肢在结构和功能上有分化,分别用于摄食、御敌、行走和游泳。4、水栖种类的头部附肢甚至躯干部的附肢有能从水中滤取食物的功能。附肢也能起攻击、防卫或辅助交配的作用,有的可通过附肢表面交换空气。有的附肢分化为很特异的结构,如蝎的栉状板和蜘蛛的纺器。有的附肢已经退化或消失。编辑本段结构特点1、外骨骼和肌肉:节肢动物的重要特征是体外覆盖着几丁质的外骨骼,又称表皮或角质层。外骨骼分成不节肢动物门同的骨片,在相邻体节之间的关节膜上,角质层非常薄,易于屈折活动。2、每体节的角质层基本上分成4块:1块背板、1块腹板和两块侧板。通常由于次生性的合并或分割而有不同的变化。附肢的管状外骨骼在各分节之间也有关节膜相连,关节也可活动。多数节肢动物体节间的关节膜折叠在前一个体节外骨骼后缘的下方。某些节肢动物有脊椎动物球窝式的关节。外骨骼有时向体内突出形成内突,作为肌肉的附着点;或内部组织骨化成游离的骨片,供体内肌肉附着,外骨骼由其下方的一层上皮细胞(称上皮或下皮)所分泌。3、外骨骼可分3层:自内向外依次为:内表皮、外表皮和上表皮。内表皮紧接上皮,是外 骨骼中最厚的一层,主要成分是蛋白质和几丁质的复合体,无色而柔软,具有延伸性和曲折性。4、外表皮位于内表皮的外侧较薄,在主要成分蛋白质和多糖几丁质中沉淀有钙盐,或富含骨蛋白,是外骨骼中最坚硬的部分,一般在节间膜和其他膜质区,由于此层不发达,因而显得柔韧。上表皮位于最外层,薄,通常含有蜡质。5、有的节肢动物外骨骼薄且无含蜡的上表皮,使水和空气可以透入。角质层一般有纤细的孔道,使角质层下方的腺体的分泌物可以通出。角质层不完全局限于体的外表面。胚胎时期外胚层内陷部分的上皮亦能分泌角质层,因而象前肠、后肠、气管、书肺以至生殖器的一部分,内面衬有角质层,蜕皮时也要脱去。上皮层向内分泌形成基膜,基膜是一层无定形的颗粒层。肌肉呈束状,由肌纤维组成,两端无肌腱,着生在外骨骼的内壁或内部突起上。6、无生命的角质层不能象脊椎动物骨骼那样生长,所以在生长过程中要定期蜕皮。蜕皮前,上皮与外骨骼分离,分泌形成一层新的上表皮。上皮再分泌几丁质酶和蛋白酶,通过新的上表皮把旧皮中的内表皮腐蚀掉。接着上皮层再分泌新的外表皮和内表皮。此时动物体外包着新旧两层皮。旧皮沿着预定的某些线裂开,身体蜕出,前后两次蜕皮之间的阶段叫做龄期。甲壳动物一生中连续蜕皮多次,性成熟交配繁殖后还能再次蜕皮。编辑本段形态特征身体分部节肢动物身体两侧对称。由一列体节构成,异律分节,可分为头、胸、腹三部分,或头部与胸部愈合A・地・B110914节肢动物门为头胸部,或胸部与腹部愈合为躯干部。例如:昆虫纲(蝗虫)动物身体分头、胸、腹三部分;甲壳纲(虾)动物身体分头胸、腹二部分;蛛形纲(蜘蛛)动物身体分头胸部、腹部;多足纲(娱蚣)动物身体分头部、躯干部。身体的分部在生理机能上也出现了分工:头部:感觉和取食中心;胸部:运动和支持中心;腹部:营养和繁殖中心。附肢分节节肢动物每一体节上有一对分节的附肢。附肢有双枝型和单枝型两类。节肢动物的附肢也按节排列,与环节动物的附肢疣足相比,有了重大进步,疣足与节肢的比较见下表:疣足节肢按节分布,数量多体部分布数量少形态划一形态多样与身体之间无关节附肢不分节身体之间后关节附肢分节无肌肉附着有大量肌肉附着具有发达的横纹肌节肢动物的肌肉与体壁之间不形成连续的肌肉层,而是发展为分离的肌肉束。在节肢动物以前的动物肌肉都是平滑肌,从节肢动物开始形成横纹肌,获得高度发达的运动机能。 体被含有几丁质的外骨骼体壁含有几丁质是节肢动物的重要特征之一。节肢动物的体壁具有一定的硬度,起着相当于骨骼的支撑作用,故称其为外骨骼。几丁质是含氮的多糖类化合物醋酸酰胺葡萄糖。几丁质以网格状结构包埋在蛋白质的基质中。几丁质的物理性质是柔软的,具有一定的弹性和韧性。几丁质与蛋白质一起组成节肢动物体壁的主要成分。体壁的坚硬程度不是由于几丁质的存在,而是由于蛋白质在酶作用下的糅化和硬化。在相邻体节之间的关节膜上,角质层非常薄,易于屈折活动。附肢的关节也可活动。坚硬的外骨骼会限制身体的生长,因此节肢动物在生长过程中要定期蜕皮,前后两次蜕皮之间的阶段叫做龄期。呼吸系统多样性节肢动物呼吸器官形式多样,随着不同的生态类群而有一系列变化:节肢动物门1、体壁:低等的小型甲壳动物,如水蚤。2、鲤:水生甲壳动物在足的基部由体壁向外突起薄膜状的结构,充满毛细血管。如虾、蟹等。3、书鲤:由足基部体壁向外突起折叠成书页状,有血管分布。为水生种类赏的呼吸器官。4、书肺:由体壁向内凹陷折叠成书页状,为陆生的节肢动物蜘蛛、蝎的呼吸器官。5、气管:由体壁内陷形成分支的管状结构,为陆生节肢动物昆虫马陆、娱蚣等的呼吸器官。气管上无毛细血管分布,是直接将氧气输送到呼吸组织。节肢动物呼吸系统虽然形式多样性,但都是体壁的衍生物。水生种类的呼吸器官都是体壁的向外突起;陆生种类的呼吸器官都是体壁的向内凹陷。呼吸机制有两类:气管系统:直接将氧气输送到呼吸组织,与细胞进行气体交换;其它类型是呼吸系统都通过毛细血管进行气体交换,再由循环系统完成输送氧气的任务。具混合体腔和开管式循环系统1、混合体腔:节肢动物的体腔在发育早期也形成中胚层的体腔囊,但在继续发育的过程中,不扩展为广阔的真体腔,而是退化为生殖管腔、排泄管腔和围心腔。在以后的发育过程中,围心腔壁消失,使体壁和消化道之间的初生体腔与围心腔的次生体腔相混合,形成混合体腔。混合体腔内充满血液,混合体腔也称作血腔。2、开管式循环系统:血液经心脏>动脉>血腔>心孔>心脏。心脏能自主搏动,血流有一定方向。节肢动物循环系统的复杂程度与呼吸系统的复杂程度有关:呼吸系统简单(局限于身体某一部分),循环系统复杂如虾;呼吸系统复杂(分散在全身各部分),循环系统简单,如昆虫;用体表呼吸的小型节肢动物循环系统消失,如水蚤。具两种类型的排泄器官1、与后肾管同源的腺体:由后肾管演变而来,如甲壳纲的触角腺(绿腺),蜘形纲的基节腺等.节 节肢动物门肢动物的排泄器官肾口二次性封闭,由腺体部和膀胱部组成。含氮废物经渗透进入腺体部,再由膀胱部排出体外。2、马氏管型:昆虫、蜘蛛等以马氏管为排泄器官。马氏管是由消化道中、后肠交界外的肠壁向外突起形成的管状结构。它直接浸浴在血液中,能大量尿酸等含氮废物,送入后肠后,经肛门排出体外。神经系统和感官器官节肢动物的神经系统与环节动物的神经系统基本上是相同的,同属于链状结构。但由于节肢动物的异律分节,常有一些前后相邻的神经节愈合成一个较大的神经节或神经团。节肢动物神经节愈合的情况与身体外部分节的消失是密切相关的。如蜘蛛体外分节不明显,其神经节也都集中在食道的背方和腹方,形成了很大的神经团。神经节互相愈合时,便失去其原来的链状结构。原气管纲具2条腹神经索,上面没有明显的神经节,这与涡虫的阶梯式神经系统相似。节肢动物的感觉器官相当复杂,有司平衡、触觉、视觉、味觉、嗅觉和听觉的感觉器官。眼有单眼和复眼两种。复眼由个眼组成,能感知外界物体的运动和形状,能适应光线强弱和辨别颜色。身体分布昆虫纲(蝗虫):头、胸、腹三部分;甲壳纲(虾):头胸、腹二部分;蛛形纲(蜘蛛):头胸部、腹部;多足纲(蝶蚣):头部、躯干部。编辑本段生长繁殖多数节肢动物雌雄异体,且往往雌雄异形。陆生种类常行体内受精,而水生种类有很多为体外受精。一般节肢动物门是卵生,也有卵胎生。卵裂的方式是表裂,有直接发育,也有间接发育。间接发育的种类有一至数种不同的幼虫期,有时这些幼虫的生活习性与成虫不同。也有些节肢动物能进行孤雌生殖,即没有受精的卵就能发育为成虫。此外,还有幼体生殖和多胚生殖等形式。节肢动物是没有无性生殖的。除蔓足类和寄生等足类等少数甲壳动物外,多数节肢动物雌雄异体。个别附肢变化为交配器官。陆生种类常行体内受精,而水生种类有很多为体外受精。生殖方式多样,一般是卵生,也有卵胎生;除两性生殖外,还有孤雌生殖、幼体生殖和多胚生殖等形式。许多节肢动物生殖量大,卵黄较少,受精卵很快孵化成幼体。有的卵含卵黄多,有很好的卵壳保护或受母体保护、孵出时体型与成体相似。世代间隔在某些昆虫和小型甲壳动物不到3天,所以一对两性生殖的雌体或一个孤雌生殖的雌体在几周内可产数百万个后代,相反,某些大型冷水虾蟹类4岁或更多年才成熟,隔一年产卵1次。编辑本段主要特征第一,异律分节的高度发展。 节肢动物门第二,体被几丁质蛋白质复合体的外骨骼。第三,附肢分节并有关节。第四,横纹肌发达,能迅速收缩。第五,开管式血液循环。第六,体壁内陷形成气管作为呼吸器官。第七,排泄系统由肠壁向外突起而形成。第八,神经系统和感觉器官发达。第九,绝大多数属雌雄异体,体内受精。编辑本段分类系统对于节肢动物分类系统存在不同意见,对纲以上的高级分类阶元,各学者的意见大相径庭。根据体节节肢动物门的组合、附肢以及呼吸器官等暂将现存种类分为下列二亚门六纲:原节肢动物亚门原节肢动物亚门(Protarthropoda)体不分节,仅表面有环纹。附肢也不分节。只有一纲⑴有爪纲(Onychophora)也称原气管纲(Prototracheata),如栉蚕等。真节肢动物亚门真节肢动物亚门(Euarthropoda)体分节。附肢也分节。共5纲。⑵肢口纲(Merostomata)体分头脑部和腹部。头脑部有6对附胶,即一对螫肢(chelicera)和5对步足;无触角。腹肢7对。用鲤呼吸。如赏等。⑶蛛形纲(Arachnoida)体分头胸部和腹部。头胸部有6对附肢,即一对赘肢、一对脚须(触肢)(PalP=PediPalP)和4对步足;也无触角。腹肢几乎完全退化。用书肺和气管呼吸。如各种蜘蛛等。⑷甲壳纲(Crustacea)体常分头脑部和月M部。头胸部有13对附肢,即5对头月和8对胸肢。5对头肢包括2对触角,一对大颗和2对小颗。8对胸肢中前几对为颗足,其余为步足。腹肢有或无。用鲤呼吸。如各种虾和蟹等。⑸多足纲(Myriapoda)体分头部和躯干部。头部有3—4对附肢,即一对触角、一对大颗,和1〜2对小颗。躯干部有多对步足,每一体节l―2对。用气管呼吸。如娱蚣等。⑹昆虫纲(Insecta)体分头、胸、腹三部、头部有4对附肢,包括一对触角、一对大颗,一对小额以及一对左右愈合成为一片的下唇、胸部有3对步足。腹部附肢几乎完全退化。如 各种蚊和蝇等。有学者将节肢动物门分4个亚门:已灭绝的三叶动物亚门、现存的螯肢动物亚门、甲壳动物亚门和单枝动物亚门,下分19纲,如三叶虫纲(以寒武纪、奥陶纪最盛)、甲壳纲、肢口纲(即腿口纲)、蛛形纲(化石不多)、原气管纲、多足纲(化石不多)及昆虫纲。尤以古生代的三叶虫为最重要。还有学者将节肢动物门进行如下分类:原节肢亚门(protoarthropoda)三叶形亚门(Trilobitomorpha)三叶形纲(Trilobitoidea)三叶虫纲(Tirlobita)螯肢亚门(Chelicerata)蛛形纲(Arachnida)螯肢亚门最大的一纲肢口纲(Merostomata)坚角蛛亚门(Pycnogonida)有额亚门(Mandibulata)甲壳纲(Crustacea)昆虫纲(Insecta)多足纲(Myriapoda)甲壳纲:代表动物,对虾节肢动物门5个头节+8个胸节+腹部7个体节除尾节外,每一体节都有1对分节的附肢,因执行的功能不同,形状也就不同头胸部,触角,颚片(形成咀嚼器),颚足(胸部前3对),足鳃,关节鳃,步足(胸部后5对)捕食,爬行,腹部6对,游泳龙虾,螃蟹蛛形纲蜘蛛,肉食性,结网,食鸟蜘蛛几丁质外壳不如甲壳类坚硬分为头胸部和腹部,只有单眼,无复眼头部附肢:2对,第1对为螯肢,其内或头胸部的毒液由此导出,第2对与其它后面的附肢相似,但分为6节胸部:4对,分为7节蜘蛛腹部:无 呼吸用书肺,腹面体壁内陷形成的囊状构造,血液呈绿色,在书肺进行气体交换,雌雄异体,雌大雄小,蝎子、后腹部末端有一尾刺,毒物为神经性的,人受蜇,疼痛难忍,小孩甚至危及生命,但可入药。蜱螨类,寄生种类多足纲:蜈蚣头、躯干2部分蜈蚣身体22节,每节附肢1对昆虫纲动物界最大的纲主要特征:身体分为头、胸、腹3部分,胸部3对足,多数种类有2对翅,由外骨骼产生,适应能力强头部,6个体节,成虫愈合为一体。触角、口器(摄食器官)由头部附肢演变而来;3个单眼,1对复眼胸部,3节,3对附肢,翅运动腹部,12节,11个体节,1个尾节,末端几个常退化或愈合。成虫腹部附肢大多退化,仅留1对尾须和外生殖器,代谢,繁殖。变态现象不完全变态:卵-幼虫(与成虫相似)—成虫如:蝗虫异蜈蚣完全变态:卵f幼虫f数次蜕皮,蛹f羽化,成虫如:蝴蝶无翅亚纲:缨尾目,衣鱼,抽屉、衣箱内常见有翅亚纲:直翅目:蝗虫,蝼蛄半翅目:椿象,树上常见,分泌一种挥发性油,很臭;臭虫同翅目:蚜虫脉翅目:中华草蛉鳞翅目:各种蝶类、蛾类,家蚕鞘翅目:金龟子,瓢虫膜翅目:蜜蜂,蚂蚁双翅目:各种蚊类,各种蝇类节肢动物,除已灭绝的三叶动物亚门外,传统上根据有无触角而分成2个亚门。无触角的叫有螯动物亚门,因第1对口后附肢是取食用的螯肢而得名,包括邕、蝎、蜘蛛、蟀蛾等;有触角的叫有颗动物亚门,其第1对口后附肢是大颗,包括昆虫纲、甲壳动物,娱蚣和马陆等。但现在大多数动物学家认为有颗动物亚门是人为的组合,所包括的类群之间并尢尔逐天系。因此,节肢动物门应该分成4个亚门:已灭绝的三叶动物亚门、现存的螯肢动物亚门、甲壳动物亚门和单枝动物亚门。三叶动物亚门表现出最原始的特征,均生活在海洋中。除触角外,其余各体节均有双枝型附肢。螯肢动物亚门的肢口纲和蛛形纲头部的附肢。书鲤和书肺为同源,说明两纲比较接近。甲壳动物亚门过去作为一个纲即甲壳纲,因有大额而被认为可能与多足纲、昆虫纲同源,但甲壳动物具2对触角且有其他各门所没有的无节幼体期,应为单独起源。单枝动物亚门与上述起源于海洋的亚门不同,似乎由陆地上演化而来,有触 角和大颗,附肢基本上为单枝型。亚门19纲节肢动物门三叶动物亚门(SubphylumTrilobitomorpha)三叶虫纲(Trilobita)螯肢动物亚门(SubphylumChelicerata)肢口纲(Merostomata)蛛形纲(Arachnida)海蛛纲(Pycnogonida)甲壳动物亚门(SubphylumCrustacea)头虾纲(Cephalocarida)鳏、足纲(Branchiopoda)桨足纲(Remipedia)介形纲(Ostracoda)须虾纲(Mystacocarida)节肢动物门一多足微虾纲(Tantulocarida)模足纲(Copepoda)鲤尾纲(Branchiura)蔓足纲(Cirripedia)软甲纲(Malacostraca)单枝动物亚门(SubphylumUniramia)昆虫纲(Insecta)倍足纲(Diplopoda)唇足纲(Chilopoda)烛?纲(Pauropoda)综合纲(Symphyla)编辑本段系统组成循环系统血液循环为开管式,心脏位于背部,驱出血液到主要动脉,然后到浸泡组织和器官的血腔内。血液经围心腔 节肢动物门从成对的心孔流回心脏。血液流入时心孔张开,心脏收缩压血入动脉时心孔关闭。具混合体腔和开管式循环系统。混合体腔:节肢动物的体腔在发育早期也形成中胚层的体腔囊,但在继续发育的过程中,不扩展为广阔的真体腔,而是退化为生殖管腔、排泄管腔和围心腔。在以后的发育过程中,围心腔壁消失,使体壁和消化道之间的初生体腔与围心腔的次生体腔相混合,形成混合体腔。混合体腔内充满血液,混合体腔也称作血腔。开管式循环系统:血液经心脏——>动脉——>血腔>心孔>心脏。心脏能自主搏动,血流有一定方向。节肢动物循环系统的复杂程度与呼吸系统的复杂程度有关。消化系统前肠和后肠较长,均由外胚层发育而来,内部衬有几丁质。中肠来源于内胚层。前肠主要摄食、研磨和贮藏食物,根据食物和取食方式的不同,前肠各部分有不同的演变。中肠是产生酶以及消化、吸收的场所,有的种类酶进入前肠而在前肠即开始消化食物,有的则到体外,先行体外消化。中肠因常有盲囊突出物或大的消化腺以增大表面面积。后肠吸收水分,形成粪便。呼吸系统水生种类的呼吸器官为鲤或书鲤,陆生的为气管或书肺或两者兼有。这些呼吸器官都是体壁的衍生物。具气管的节肢动物,其气管的分支可终于组织细胞,因而无需血液传送气体。节肢动物各纲的气管结构不同,在向陆地生活适应过程中各有独立的演化。简单的节肢动物无气管,靠体表交换气体。呼吸系统简单(局限于身体某一部分),循环系统复杂如:虾。呼吸系统复杂(分散在全身各部分),循环系统简单,如:昆虫。用体表呼吸的小型节肢动物循环系统消失,如:水蚤。神经系统与环节动物相似,为集中型链状神经系统。头部、胸部和腹部末端的神经节较发达。脑增大,这与它具有发达的感官和复杂的行为有关联。脑分前脑、中脑和后脑三部分。前脑发出神经到眼,调节光感受和运动,可能是复杂行为的起点。中脑发出触角神经(在甲壳动物为第1触角)。螯肢动物亚门(蝎、蜘蛛、螨)无触角,中脑相应地消失。后脑发出神经到下唇、消化道、螯肢(螯肢动物亚门)和第二触角(甲壳动物亚门)。脑通过食道两旁的围食道神经与食道下神经节相连。节肢动物有调节发育和代谢的内分泌系统,如昆虫的脑和腹神经索的各神经节内有神经分泌细胞,能分泌一种促激素。可激活其他内分泌腺(心侧体、咽侧体和前胸腺等)分泌激素,以控制蜕皮和变态。变异蜈蚣感官系统感官的类型和复杂程度超过任何其他无脊椎动物,有触觉、味觉、嗅觉、听觉、平衡和视觉等感觉器官。由于有发达的感觉和神经系,所以某些种类有巨大的传递信息的能力。眼有单眼和复眼两种。复眼由个眼组成,能感知外界物体的运动和形状,能适应光线强弱和辨 别颜色。触觉靠触角上或体上的刚毛、味觉靠唇上的刚毛和水生种类附肢或体表的刚毛以感受外界的刺激。平衡器能感知重力的变化。跗节器可能有嗅觉,琴形器可能有嗅觉或听觉的功能。编辑本段价值节肢动物外骨骼可以形成化石。从距今约7〜10亿年前的伊迪卡拉动物群中即已发现了节肢动物化石,从早寒武世开始三叶虫大量出现。许多节肢动物化石曾作为标准化石用于地层对比和指示沉积环境。 棘皮动物门商科技名词定义中文名称:棘皮动物门英文名称:Echinodermata定义:动物界中的一门体腔动物,具独特水管系统,体形辐射对称,骨骼发达,是无脊椎动物中进化地位很高的后口动物,各纲动物体形态变化很大,但主要器官的基本构造十分相似。应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);棘皮动物门(三级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片棘皮动物门是动物界的一个门,其特点是辐射对称,具独特的水管系统。体中有与消化道分离的真体腔,体壁有来源于中胚层的内骨骼,幼体两侧对称,发育经过复杂的变态。口从胚孔的相对端发生,属后口动物,在无脊椎动物中进化地位很高。包括海星、蛇尾、海胆、海参和海百合等。因表皮一般具棘而得名。全为海产。现生约5900种,中国已发现500多种。目录棘皮动物门简介门的主要特征棘皮动物分类形态特征体内构造生态分布经济意义画编辑本段棘皮动物门简介拼音:jipidengwUmen棘皮动物门是动物界的一个门,包括一些古老的海洋动物。这个门 从寒武纪出现,总共有20000多种类。已知现生棘皮动物有5纲1242属6413种,化石棘皮动物21纲2013属14328种。外观差别很大,有星状、球状、圆筒状和花状。成体五放辐射对称,由管足排列表现出来。身体区分为有管足的辐部或步带和无管足的间辐部或间步带。内部器官,包括水管系、神经系、血系和生殖系均为辐射对称,只有消化道除外。身体有口面和反口面之分。棘皮动物是后口动物。它们的原肠胚孔形成肛门一而口部是后来形成的。它们有特殊的五体对称步管结构。由于棘皮动物的胚尬形成方式和脊索动物一样、所以它们虽然看起来原始,但实际上是包括人在内的脊索动物的近亲。刚出生的棘皮动物是两边对称的。成长期间,左边增大而右边缩小,直到右边被完全吸收了,然后这一边长成五倍辐形对称形状。编辑本段门的主要特征1成体五辐射对称,幼体两侧对称。2体表有棘状突起,具有中胚层形成的内骨骼。棘状突起有二种:刺参(1)内骨骼向外突起形成的棘状突。(2)肌肉质的圆锥形肉刺。3真体腔发达,具有特殊的水管系统。棘皮动物的真体腔发达,包括:围脏腔:围绕内脏器官的腔。围血系统:围绕循环系统的管腔 水管系统:形成管足,组成棘皮动的运动器官,并兼有呼吸作用。水管系统的结构:筛板-石管-环水管--辐水管(5根)—侧水管--管足囊和管足编辑本段棘皮动物分类海胆亚门:包括7个纲:海旋板纲海座星纲海蛇函纲海蒲团纲海盘囊纲海参纲海胆纲海扁果亚门:包括3个纲。海桩纲海笔纲海箭纲海百合亚门:包括8个纲。始海百合纲海林檎纲拟海百合纲垫海蕾纲拟海蕾纲海蕾纲鳞海林檎纲海百合纲海星亚门:包括1个纲。海星纲编辑本段形态特征外观差别很大,有星状、球状、圆筒状和花状。成体五放辐射对称,由管足排列表现出来。根据管足的有无,身体区分为有管足的辐部或步带和无管足的间辐部或间步带。内部器官,包括水管系、神经系、血系和生殖系均为辐射对称,只有消化道除外。由于辐射对称,身体有口面和反口面之分。尽管本门各纲动物L体形有很大差别,但其基本构造十分一致。海星和蛇尾类呈星形,上下扁平,体轴很短,口面朝下,管足沿着腕(辐部)作 放射状排列。海胆和坦宜体轴延长,辐部和间辐部结合,体呈球形或圆筒形,管足作子午线排列。海百合口面向上,反口面具长柄或卷枝供附着用。棘皮动物骨骼很发达,由许多分开的碳酸钙骨板构成,各板均由一单品的方解石组成。骨骼外包表皮,皮上一般带棘。海胆和海星有不同的叉棘。海胆骨骼最为发达,骨板密切愈合成壳。海星、蛇尾和海百合的腕骨板成椎骨状。海参骨骼最不发达,变为微小的分散骨针或骨片。编辑本段体内构造棘皮动物成体体腔主要被消化系和生殖系占据,但海百合体腔填有结缔组织构造的膜和索。水管系由体腔的一部分——水腔演变而成。移动、摄食、呼吸和感觉全都要靠它来完成。典型水管系自筛板开始,经过石管,通至围绕口部的环管和伸至辐部的辐管。辐管上有小分枝分到管足。管足基部有坛囊,末端有吸血,内充海水,靠肌肉伸缩来移动身体。神经系、血系和水管系都有一个围绕食通的环,并从环上向各辐部分出一条主枝。棘皮动物有3种神经系:①口面神经系或称外神经系,在表皮内或表皮下,包括围绕食道的神经环与伸入各辐的辐神经,为现代棘皮动物的主要神经,各纲都有,而且多半发达(海百合纲除外)。②下神经系在口神经里边,排列与口神经完全相同。③反口面神经系或内神经系在反口面皮肤下,在海百合类比较发达。血系位于神经系和水管系中间,在海参和海胆比较发达。海星和蛇尾的消化系有一大囊状胃,肠直走,不弯曲;海星常有从胃向各腕伸出的一对称为幽门盲囊的消化腺。其他各纲的消化管多为一长而弯曲的管子,由肠系膜连于体壁。蛇尾和某些海星无肛门,凡是不能消化的东西从口里吐出。海百合的口和肛门全朝上,许多歪形海胆肛门常在体后部或口面。没有明显的排泄器官,排泄功能由变形游走细胞负责。呼吸系也不发达。海星的皮鲤和海胆的围口鲤可增加呼吸的能力和面积。某些海参有特殊的呼吸器官,称呼吸树。棘皮动物多为雌雄异体,雌雄在外形上常无区别。牛殖细胞释放到海水中受4星。幼体在初发生时形状相同、均有纤毛环、消化道分为3部分,以后则随纲而异,发育成4种不同类型的幼体:耳状幼体(海参)、羽腕 幼体(海星)、蛇尾幼体和海胆幼体。海百合类幼体呈桶形,称为樽形幼体,与浮游的纽鲤类的海樽十分相似。编辑本段生态分布棘皮动物是重要的底栖动物,分布世界各海洋。垂直分布范围很广,从潮间带到万米深的海沟。它们多为狭盐性动物,在半咸水或低盐海水中少见或偶见。体外无特殊的覆盖层,但具有特别的水管系。身体所含水分可以随外界盐度的高低而自由渗透。棘皮动物对水质污染很敏感,在被污染了的海水中很少见到它们。再生力一般很强,如果腕、盘或其他外部器官发生损伤或断落,都能再生。某些种类常有自切现象。少数种类可行无性裂体繁殖。栖息环境因种类而异。它们匍匐于海底或钻到泥沙底内生活。少数海胆并能钻石。海百合类营固着或暂时固着生活。少数海参行浮游生活。自由生活的种类能够缓慢移动。摄食方式多样,有的为吞食性,有的为滤食性,有的为肉食性。除板蛇尾外,棘皮动物没有寄生的种类。吸口虫类是专门寄生于海百合类的特殊多毛类。少数螺类寄生于棘皮动物,有的为外寄生,有的为内寄生。甲壳类与棘皮动物营寄生或共生的都有。隐鱼是著名的寄生在海参泄殖腔内的动物。寄生于棘皮动物体内的还有纤毛虫、扁虫和圆虫。编辑本段经济意义有些棘皮动物是珍贵食品,如海参、海胆卵。在海洋生态系统内,棘皮动物在某些底栖动物群落中,常为优势种。在深渊海底的底栖动物生物量中,棘皮动物最高可占90%在研究海洋动物地理学上、刺皮动物常是很好的指标种。某些吞食性种类能够大量搬运腐败物质,能减少海底微生物的活动。某些钻石的种类对海岸线造成破坏。某些蛇尾类常是底栖鱼类的饵料。海星喜吃贝类,在贝类养殖上常是敌害。棘皮动物化石种类甚多,在地质学上占有一定地位。有的石灰石地层全部由分解了的海百合骨骼构成。在实验胚胎学等基础理论研究方面,海胆卵是很好的实验材料之一。某些棘皮动物具有毒腺或毒液,有可能通过研究发展成药物。从几种海参分离出的海参素和粘多糖具有抗癌活性。 半索动物门商科技名词定义中文名称:半索动物门英文名称:Hemichordata定义:介于非脊索动物与脊索动物之间的一个门,其主要特征是具有背神经索、腮裂和口索。下分三个纲:肠腮纲(Enteropneusta)、翼腮纲(Pterobranchia)、笔石纲(Graptolithina)应用学科:古生物学(一级学科);古无脊椎动物学(二级学科);半索动物门(三级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片半索动物门半索动物门Hemichordata,动物界的一门,分类地位仅次于脊索动物门。以肠体腔法形成体腔,因口腔背侧向前方吻部突出一个小盲管,有些学者称它为口索,认为相当于脊索构造,因而得名。全世界现生种不到100种,均为海生,营底栖生活。目录简介半索动物在动物界的位置半索动物门的代表动物及其主要特征简介 半索动物在动物界的位置半索动物门的代表动物及其主要特征展开囹编辑本段简介体呈蠕虫形或瓮状,营个体自由生活或群体固着生活。体腔和身体均区分为吻、领和躯干3部分。具有表皮神经系统中枢位于领部的领神经索和躯干部的背、腹神经索。通常具有能收缩的围心囊的循环系统。具特有的口索或称吻盲管。大多数种具成对鲤裂。触手腕有或无。半索类包括3个纲:①肠鲤纲:俗称柱头虫,营个体生活,雌雄异体。多为穴栖,以藻类、原生动物等为食。以潮间带或潮下带种类较多。约有70余种,中国已报道6种。②羽鲤纲:包括头盘虫、杆壁虫和无管虫3属,是群小形的半索动物。营聚生或群体生活,躯干呈囊状,具"U'形消化管和具1对触手腕(杆壁虫)或4〜9对触手腕(头盘虫和无管虫)。无吻骨骼。雌雄异体或无性生殖。这类动物较为罕见,在中国尚未发现。③浮球纲:幼虫虫体透明、呈球状。体表具有一些弧形分支纤毛带,其"U'形消化管,具带胶质的体腔囊,生活在深海。这类动物的成虫尚未发现。半索动物有一些特征与脊索动物的原始类相似,因此该门动物实是研究动物进化的重要环节,从它的分类地位上看,学术上颇具重要意义。编辑本段半索动物在动物界的位置半索动物在动物界究竟处在什么地位?[u这个问题直到现在还是有争论的[。有人认为:半索动物应该列入动物界中最高等的一个门即脊索动物门里面去。因为半索动物的主要特征与脊索动物的主要特征基本符合。它的口索相当于脊索动物的脊索:它的背神经索前端有空腔,相当于脊索动物的背神经管;它也有咽鲤裂。当然,在脊索动物中,半索类仍然是最原始的一群。不同意上述观点的人则认为:把口索直接看成是与脊索相当的构造,还欠说服力,因为根据一些研究报告,口索很可能是一种内分泌器官。在另一方面,半索动物却具有一些非脊索动物的结构,例如腹神经索、开管式循环、肛门位于身体末端等等。就目前已有的研究资料来看,把半索类作为脊索动物中的一个类群,不如把它作为无脊索动物中的一个独立的门较为合适。现有的动物学文献表明:半索类和棘皮动物的亲缘更近,它们可能是由一类共同的原始祖先分支进化而成。根据是: 1.半索动物和棘皮动物都是后口动物。2.两者的中胚层都是由原肠凸出形成。一3.柱头虫的幼体(柱头幼虫)与棘皮动物的幼体(例如短腕幼虫)形态结构非常相似。4.有人认为,脊索动物肌肉中的磷肌酸(phosphagen)含有肌酸[creatine,NHC(NH2N(CH3)(CH2CO2H]的化合物,非脊索动物肌肉中的磷肌酸含有精氨酸[(arginine,H2NC(:NHNH(CH2)3-CH(NH2CO2H]的化合物。但海胆和柱头虫的肌肉中都同时含有肌酸和精氨酸。说这两类动物有较近的亲缘关系,从生化方面也可以得到证明。半索动物门的两个纲,在外形上差别很大。肠鲤纲的动物像蚯蚓,羽鲤纲的动物像苔葬虫。这是因为它们各自适应不同的生活环境而产生的结果,凡是分类地位很近的动物,由于分别适应各种生活环境,经长期演变终于在形态结构上造成明显差异的现象,特称为适应辐射(adaptiveradiation)。在动物界,这样的例子很多。编辑本段半索动物门的代表动物及其主要特征柱头虫的外形和生活习性柱头虫(Balanoglossus)属于肠鱼思纲(Enteropneusta),是半索动物门中分布甚广的类群,产于我国的三崎柱头虫(B.misakiansis)具有本门动物的主要特征。体呈蠕虫形,两侧对称而背腹明显,全身由吻(proboscis)、领(collar)和躯干(trunk)三部分组成,吻位于最前端,稍后是指环状的领,躯干部最长,又可分为鲤裂区、生殖区、肝囊区和肠区,末端为肛门。虫体内的各部均有空腔,即由体腔分化而成的吻腔、领腔和躯干腔。柱头虫凭藉富含肌肉和腔内充满海水的圆锥形吻部,在浅海沙滩中运动和挖掘成U字形洞道,并藏身在洞道内营少动的生活,人们可在退潮时于其洞口看到盘曲成条的粪便(图13-2)。主要特征1.体壁和体腔体壁由表皮、肌肉层和体腔膜构成。表皮的外层是单层较厚的上皮,外被纤毛,除肝囊区外,上皮内含有形状各异的多种腺细胞,均可分泌粘液至体表,粘牢洞道壁上的沙粒,使之不致坍塌。外层下为神经细胞体及神经纤维交织而成的神经层,底部则为薄而无结构的基膜(图13-3)o基膜的深处是环肌、纵肌和结缔组织合成的平滑肌层,紧贴其内的为体腔膜。 吻内有一吻腔,后背部以吻孔与外界相通,可容水流进入和废液排出,当吻腔充水时,吻部变得坚挺有力,形似柱头,可用于穿洞凿穴,柱头虫即因此而得名。领和躯干部被背、腹隔膜分为成对的领腔及躯干腔,这5个腔都是由体腔分化而来。消化和呼吸柱头虫的消化道是从前往后纵贯于领和躯干末端之间的一条直管。口位于吻、领的腹面交界处,口腔背壁向前突出一个短盲管至吻腔基部,盲管的腹侧有胶质吻骨(pro-boscisskeleton),但尚无坚硬结构,因此过去曾被视作雏形脊索而称为口索(stomochord),也有人认为短育管可能是脊椎动物脑垂体前叶的前身。由于口索形甚短小,所以把具有这一结构的动物称为半索动物。口后是咽部,在外形上相当于鲤裂区,具背侧排列着许多(7〜700)成对的外鲤裂,每个外鲤裂各与一U字形内鲤裂相通,然后再由此通向体表。彼此相邻的鲤裂间布有丰富的微血管,虫体在泥沙掘进过程中,水和富含有机物质的泥沙被摄入口内,水经内鲤裂从外鲤裂排出时,就完成了气体交换的呼吸作用(图13-4),而食物的消化和吸收情形,则与蚯蚓大致相同。胃的分化不显著,在肠管靠后段的背侧有若干对黄、褐、绿等混合色彩的突起为肝盲囊(he-paticcaecum),故称肝囊区,肝盲囊是柱头虫的主要消化腺。肠管直达虫体末端,开口于肛门。循环和排泄循环系统属于原始的开管系,主要由纵走于背、腹隔膜间的背血管、腹血管和血窦组成。血液循环方式与蚯蚓类似,背血管的血液向前流动,腹血管的流向往后。背血管在吻腔基部略为膨大呈静脉窦,再往前则进入中央窦。中央窦内的血液通过附近的心囊搏动,注入其前方的血管球(脉球glomer-ulus),由此过滤排出新陈代谢废物至吻腔,再从吻孔流出体外。自血管球导出4条血管,其中有2条分布到吻部,另2条为后行的动脉血管,在领部腹面两者汇合成腹血管,将血管球中的大部分血液输送到身体各部。神经除身体表皮基部满布神经感觉细胞外,还有2条紧连表皮的神经索,即沿着背中线的一条背神经索和沿着腹中线的一条腹神经索。背、腹神经索在领部相联成环。背神经索在伸入领部处出现有狭窄的空隙,由此发出的神经纤维聚集成丛,这种结构曾被认为是雏形的背神经管,该特点表明它们似与更高等的脊索动物具有一定亲缘关系(图13-5)。 生殖和发育雌雄异体生殖腺的外形相似,均呈小囊状,成对地排列于躯干前半部至肝囊区之间的背侧。性成熟时卵巢呈现灰褐色,精巢呈黄色。体外受精,卵和精子由鲤裂外侧的生殖孔排至海水中。柱头虫的卵小,卵黄含量也少,受精卵为均等全裂,胚体先发育成柱头幼虫(tornaria),然后经变态为柱头虫。柱头幼虫体小而透明,体表布有粗细不等的纤毛带,营自由游泳生活,它们不论在形态或生活习性方面均酷似棘皮动物海参的短腕幼虫(bipinnaria)(图13-6)。变态时期,幼虫沉至海底,身体逐渐转为黄色,纤毛带也相继消失,前后两端分别延伸成吻部和躯干部,最终发育成柱头虫。美国沿海的有些种类(纤吻柱头虫Saccoglossus)于胚胎发育过程中不经幼虫时期和变态,即可直接发育为柱头虫。我国北部沿海分布的柱头虫有殖翼柱头虫科(Ptyroboderidae)的三崎柱头虫及玉钩虫科(Harrimaniidae)的黄岛长吻柱头虫(Dolichoglossushwangtauensis)等(图13-7)。 脊索动物门囹求助编辑百科名片脊索动物门动物界最高等的一门动物。其共同特征是在其个体发育全过程或某一时期具有脊索、背神经管和鲤裂;包括尾索动物、头索动物和脊椎动物。除去以上主要特征外,脊索动物还具有一些次要的特征:密闭式的循环系统(尾索动物除外工心脏如存在,总是位于消化管的腹面;肛后尾,即位于肛门后方的尾,存在于生活史的某一阶段或终生存在;具有胚层形成的内骨胳。至于后口、两侧对称、三胚层、真体腔和分节性等特征则是某些无脊椎动物也具有的。目录简介特征脊索背神经管咽鲤裂肛后尾脊索动物的心脏及主动脉下属分类(1)尾索动物亚门代表动物一柄海鞘尾索动物分类尾索动物的演化(2)头索动物亚门代表动物一白氏文昌鱼头索动物分类头索动物的进化意义(3)脊椎动物亚门脊椎动物分类相关资料脊索动物与无脊椎动物的区别与联系脊索动物的起源脊索的出现在动物演化史上的意义简介 特征脊索背神经管咽鲤裂肛后尾脊索动物的心脏及主动脉下属分类(1)尾索动物亚门代表动物一柄海鞘尾索动物分类尾索动物的演化(2)头索动物亚门代表动物一白氏文昌鱼头索动物分类头索动物的进化意义(3)脊椎动物亚门脊椎动物分类相关资料脊索动物与无脊椎动物的区别与联系脊索动物的起源脊索的出现在动物演化史上的意义展开囹编辑本段简介脊索动物门定名于1874年,是由赫克尔(ErnstHaeckel)根据俄国胚胎学家柯伐列夫斯基(A.0.Koba刀的砥究队文昌鱼等动物和脊椎动物合并在一起而成立了这一新门。脊索动物门包括现代生存的4万多种动物,分为三个亚门:尾索动物亚门、头索动物亚门和脊椎动物亚门。脊索动物门(PhylumChordata)是物种丰富多样的大门。由于这个门包含了脊椎动物,所以人们对它进行了广泛的研究。其中没有脊椎的脊索动物在进化中有很重要的意义。有时它们也被称为原索动物。这个名称以前还包括半索动物在内。脊索动物大约有45000个种类,分布在海洋、淡水、介于淡水和咸水之间的水体和陆生环境。有些类群进化为具有飞翔的能力。4*1也■曲解■脊索动物门现存6万余种,占全世界动物种类的5%左右。包括七鲤鳗、鱼、蛙、螂、蛇、蜥、龟、鳄、鸟、兽等脊椎动物,也包括一些数量不多、缺乏椎骨而只有脊索的海产动物,如各种海鞘和文昌鱼等。背部具有棒形脊索,本门动物的命名即由此而来。编辑本段特征脊索位于消化道和神经管之间的一条棒状结构,具有支持功能。所有脊索动物的胚胎期均具有脊索,但在以后的生活中或终生保留(尾索动物亚门、头索动物亚门),或退化并被脊柱(vertebralcolumn)代替。脊索来源于胚胎期的原肠背壁,即脊索中胚层。经加厚、分化、外突,最后脱离原肠而成脊索。脊索由富含液泡的脊索细胞组成,外面围有脊索细胞所分泌而形成的结缔组织性质的脊索鞘(notochordalsheath)。脊索鞘常包括内外两层,分别为纤维组织鞘(fibroussheath)和弹性组织鞘(elasticsheath)。充满液泡的脊索细胞由于产生膨压,使整条脊索既具弹性,又有硬度,从而起到骨骼的基本作用。低等脊索动物中,脊索终生存在或仅见于幼体时期。高等脊索动物只在胚胎期间出现脊 索,发育完全时即被分节的骨质脊柱(vertebralcolumn)所取代。组成脊索或脊柱等内骨骼(endoskeleton)的细胞,都能随同动物体发育而不断生长。而无脊椎动物则缺乏脊索或脊柱等内骨骼,通常仅身体表面被有几丁质等外骨骼(exoskeleton)。♦rm彳毕*收4,If••I'—gLf<|1.**常,4*1脊索动物门脊索的出现在动物演化史上具有重要意义。表现在:①脊索(以及脊柱)构成支撑躯体的主梁,是体重的受力者,也是内脏器官得到有力的支持和保护。②运动肌肉获得坚强的支点,在运动时不致由于肌肉的收缩而使躯体缩短或变形,因而有可能向大型化”发展。同时,脊索的中轴支撑作用也能使动物体更有效地完成定向运动,对于主动捕食及逃避敌害都更为准确、迅速。③脊椎动物头骨的形成、颌的出现以及椎管对中枢神经的保护,都是在此基础上进一步完善化的发展。背神经管(dorsaltubularnervecord)位于脊索背面中空管状的中枢神经系统。脊椎动物神经管前端膨大成脑,脑后部分形成脊髓。由胚体背中部的外胚层内陷形成。背神经管在高等种类中前、后分化为脑和脊髓。神经管腔(neurocoele)在脑内形成脑室(cerebralventricle),在脊髓中成为中央管(centralcanal)。无脊椎动物神经系统的中枢部分为一条实性的腹神经索(ventralnervecord),位于消化道的腹面。咽鲤裂咽部两侧一系列左右成对排列的裂缝,直接或间接与外界相通。低等脊索动物及鱼类的鲤裂终生存在,其他脊椎动物仅在胚胎期有鲤裂。来源于外胚层和内胚层低等脊索动物在消化道前端的咽部两侧有一系列左右成对排列、数目不等的裂孔,直接开口于体表或以一个共同的开口间接地与外界相通,这些裂孔就是咽鲤裂。低等水栖脊索动物的鲤裂终生存在并附生着布满血管的鲤,作为呼吸器官,陆栖高等脊索动物仅在胚胎期或幼体期(如两栖纲的蝌蚪)具有鲤裂,随同发育成长最终完全消失。无脊椎动物的鲤不位于咽部,用作呼吸的器官有软体动物的栉鲤以及节肢动物的肢鲤、尾鲤、气管等。青案动物门的起源与进化**M41Hli用■乳■**4*,詈巾,N1丫,144力悼卉:二,,■♦景—崎AAAIVTIl4.■■■《•喙■临,♦蚓七植,♦,*例0上■遥脊索动物门肛后尾 尾在肛门后方。肛后尾在所有的脊索动物中出现,至少在胚胎期(如人类)出现。以上的前3个特征是脊索动物的主要3大特征,此外的肛后尾及闭管式循环系统(尾索动物除外);心脏位于消化道腹面;胚胎期原肠胚的发育类型为原口;分节的肌节,附着在不分节的躯干上等特征为脊索动物的次要特征。无脊椎动物的肛孔常开口在躯干部的末端。脊索动物的心脏及主动脉位于消化道的腹面,循环系统为闭管式。无脊椎动物的心脏及主动脉在消化道的背面,循环系统大多为开管式。在上述特征中,具有脊索、背神经管和咽鲤裂是区别脊索动物和无脊椎动物最主要的3个基本特征。此外,脊索动物还有一些性状同样也见于高等无脊椎动物的,例如三胚层、后口、存在次级体腔、两侧对称的体制、身体和某些器官的分节现象等。这些共同点表明脊索动物是由无脊椎动物进化而来的。编辑本段下属分类现存的脊索动物约有41000多种,分为2大类群3个亚门,其中的尾索动物和头索动物两个亚门合称为原索动物(Protochordata):即无真正的头和脑,又称无头类(Acrania)。(1)尾索动物亚门尾索动物亚门(Urochordata)尾索动物是原始的特化的海栖脊索动物。幼体具上述3大特征,但脊索在尾部。变态后脊索消失,背神经管退化成神经节,鲤裂仍存在。成体具被囊(tunic),大多营固着生活。尾索动物和头索动物两个亚门是脊索动物中最低级的类群,总称为原索动物(Protochorda-ta)。身体包在胶质(gelatinous)或近似植物纤维素成分的被囊中,至少在幼体时期尾部具有脊索及神经管,所以称为尾索动物或被囊动物(tunicate)。全世界约有1370多种,常见种类有柄海鞘(Styelaclava)、海樽(Ascida)、玻璃海鞘(Ciona)、菊花海鞘(Botryllus)等,分布遍及世界各地的海洋。体呈袋形或桶状,包括单体或群体两个类型,绝大多数无尾种类只在幼体时期自由生活,成体于浅海潮间带营底栖固着生活,少数终生有尾种类在洋面上营漂浮式的自由游泳生活。体表有入水孔(incurrentsiphon)和出水孔(excurrentsiphon),咽壁有数量不等的鲤裂,咽外围有宽大的围鲤腔(peribranchialcavity),与出水管孔相通。一般为雌雄同体(hermaphroditism),异体受精。也有无性繁殖。由于卵 和精子并不同时成熟,所以避免了自体受精。营有性生殖,也营无性的出芽生殖,樽海鞘的生活史中甚至还有复杂的世代交替现象。除个别种类外,受精卵都先发育成善于游泳的蝌蚪状幼体,再行变态发育(一般为逆行变态)。循环系统是开官式,反向循环。早在2千多年前,尾索动物就已经被记载和描述,曾先后隶属于无脊椎动物中的蠕虫类、拟软体动物、苔藓动物或软体动物,直到1866年俄国学者柯瓦列夫斯基仔细地研究了海鞘的胚胎发育及其变态后,才正式判定其正确的分类地位,置于脊索动物门。代表动物—柄海鞘海鞘是尾索动物亚门中最主要的类群,约占全部种数的90%以上。柄海鞘是海鞘类中的优势种,经常与盘管虫(Hydroides)、藤壶(Balanus)及苔群虫(Bugula)等附着在一起,固着在码头、船坞、船体,以及海水养殖的海带筏和扇贝笼上,被作为沿海污损生物的重要指标种。柄海鞘的身体构造及变态过程在本月动物中具有一定的代表性,现以此为例简述其主要特征。外形和生活方式柄海鞘的成体呈长椭圆形,幼体型似蝌蚪。基部以柄附生在海底或被海水淹没的物体上,另一端有2个相距不远的孔:顶端的一个是入水孔,孔内通消化管而中间有一片筛状的缘膜,其作用是滤去粗大的物体,只容许水流和微小食物进入消化道;位置略低的一个是出水孔(图14-3)。从胚胎发生和幼体变态的过程来看,两孔之间是柄海鞘的背部,对应的一侧为腹部。一般情况下,水流从入水孔进入而由出水孔排出,当受惊扰或刺激时,则可引起体壁骤然收缩,体内积贮的水分别从2个孔中似乳汁般同时喷射而出,故在山东省沿海一带俗称海奶子;刺激缓解后,身体又逐渐恢复原状。它们除了可以成簇密集生活外,还能附着在同种的其它个体上,同时本身又可以被别的个体所附着,呈现垒叠的聚生现象。内部构造mantle),外套膜除了表面一层外胚入水孔的伸缩和开tunicin),并由此形成包围在动物体壁能分泌被囊素的动物,至1.体壁:柄海鞘的体壁即是包藏内部器官的外套膜层的上皮细胞外,还参杂着来源于中胚层的肌肉纤维,关。体壁能分泌一种化学成分类似植物纤维素的被囊素(体外的被囊,这就是被囊动物名称的由来。在整个动物界中,今仅发现于尾索动物和少数原生动物。外套膜在入水孔和出水孔的边缘处与被囊汇合,汇合处有环形括约肌控制管孔的启闭。内部器官中只有咽的上缘及腹面的一部分与外套膜愈合。柄海鞘的被囊表面通常不易被其它动物所附着,但是同种个体却能重叠附生,这对种群的繁衍显然是有积极意义的。2.消化和呼吸系统:入水孔的底部有口,通过四周长有触手的缘膜就是宽大的咽,咽几乎占据了身体的大半部(3/4),咽壁被许多细小的鳃裂所贯穿。从口进入咽内的水流经过鳃裂,到达围着咽外的围鳃腔中,然后经出水孔排出。围鳃腔是由身体表面陷入内部所形成的空腔,因其不断扩大,从而将身体前部原有的体腔逐渐挤小,最终在咽部完全消失。由于鳃裂的间隔里分布着丰富的毛细血管,因此当水流携带着食物微粒通过鳃裂时就能进行气体交换,完成呼吸作用。咽腔的内壁生有纤毛,其背、腹侧的中央各有一沟状结构,分别称为背板(dorsallamina或咽上沟epipharyngealgroove)和内柱(endostyle),沟内有腺细胞和纤毛细胞;背板和内柱上下相对,在咽的前端以围咽沟(peripharyngealgroove)相连,腺细胞能分泌粘液,使沉入内柱的食物粘聚成团,由沟内的纤毛摆动,将食物团从内柱推向前行,经围咽沟沿背板往后导入食道、胃及肠进行消化。肠开口于围鳃腔,不能消化的残渣通过围鳃腔,随水流经出水孔排出体外。 1.循环方式和排泄器官:心脏位于身体腹面靠近胃部的围心腔(pericardialcavity)内,藉围心膜的伸缩而搏动。心脏两端各发出一条血管,前端一条为鳃血管,沿咽腹发出分支到鳃裂间的咽壁上;后端一条称肠血管,分支到各内脏器官并注血进入器官组织的血窦之间,所以是开管式的血液循环。柄海鞘具有特殊的可逆式血液循环流向,即心脏收缩有周期性间歇,当它的前端连续搏动时,血液不断地由鳃血管压出至鳃部,接着心脏有短暂的停歇,容纳鳃部的血液流回心脏,然后于其后端开始搏动,将血液注入肠血管而分布到内脏器官的组织间。因此,柄海鞘的血管既无动脉和静脉之分,血液也无固定的单向流动方向,这种独特的血液循环方式在动物界中是绝无仅有的。柄海鞘无专门的排泄器官,仅在肠附近有一堆具排泄机能的细胞,称为小肾囊(renalvesicles),其中常含尿酸结晶。2.神经:柄海鞘的成体营固着生活,神经系统和感觉器官均甚退化,中枢神经只是一个没有内腔的神经节(nervusganglion),圆而坚硬,状如小瘤,位于入水孔和出水孔之间的外套膜壁内,由此分出若干神经分支到身体各部,神经节旁有一无色透明而略为膨大的神经腺(neuralgland,相当高等动物的脑下腺hypophy-sis)。无专门的感觉器官,仅于入水管孔、出水管孔的缘膜和外套膜上有少量散在的感觉细胞。3.生殖系统:雌雄同体,生殖腺位于肠环间和外套膜内壁上。精巢大,呈分支状,为乳白色颗粒状小块;卵巢长管状,呈淡黄色,内含许多圆形的卵细胞;两者紧贴重叠,分别以单根生殖导管(gonoduct)将成熟的性细胞输入围鳃腔,然后经出水管孔排至体外,或在围鳃腔内与另一海鞘的生殖细胞相遇受精。幼体及变态柄海鞘成体的形态结构与典型的脊索动物有很大差异。然而,它的幼体外形酷似蝌蚪并具有脊索动物3个主要特征。幼体长约0.5mm,尾内有发达的脊索,脊索背方有中空的背神经管,神经管的前端甚至还膨大成脑泡(cerebralvesicle),内含眼点和平衡器官等;消化道前段分化成咽,有少量成对的鳃裂;身体腹侧有心脏。体经过几小时的自由生活后,就用身体前端的附着突起(adhesivepapillae)粘着在其它物体上,开始其变态。在变态过程中,海鞘幼体的尾连同内部的脊索和尾肌逐渐萎缩,并被吸收而消失,神经管及感觉器官也退化而残存为一个神经节。与此相反,咽部却大为扩张,鳃裂数急剧增多,同时形成围绕咽部的围鳃腔;附着突起也为海鞘的柄所替代。附着突起背面因生长迅速,把口孔的位置推移到另一端(背部),于是造成内部器官的位置也随之转动了90。〜180。的角度。最后,由体壁分泌被囊素构成保护身体的被囊,使它从自由生活的幼体变为营固着生活的柄海鞘。柄海鞘经过变态,失去了一些重要的构造,形体变得更为简单,这种变态称为逆行变态(retrogressivemetamorphosis)。尾索动物分类本亚门是脊索动物中最低等的类群,遍布世界各个海洋,约1370多种,分属于3纲,我国已知有14种左右。尾海鞘纲尾海鞘纲(Appendiculariae)本纲是尾索动物中的原始类型,共1目3科60余种。体长数毫米至20mm,代表动物为住囊虫(Oikopleura)和巨尾虫(Megalocercushuxleyi)等。尾海鞘纲与本亚门中其他2纲的主要区别是:体外无被囊,只有两个直接开口体外的鳃裂而缺乏国鳃腔,终生保持着带有长尾的幼体状态(neotonous),大多在沿岸浅海中营自由游泳生活。生长发育过程中无逆行变态,故又名幼形纲(Larva-cea)。住囊虫包藏在由皮肤分泌的胶质住囊(gelatinous'house')内,住囊有入水孔和出水孔,住囊虫在囊中借助内有脊索和 神经索的尾巴摆动进水,并使囊中的水由出水孔排出,推动动物体前进,同时通过虫体口外特有的网筛(filter),从流水中滤取微小的浮游生物作为食物。每隔数小时,住囊的出、入水孔就将被堵塞。此时住囊虫即激烈挥动长尾,从特殊的应急出口(或称小室孔道escapehatch)破囊冲出至海中,并在很短的时间里再形成新的住囊。我国至今尚未发现本纲动物。海鞘纲海鞘纲(Ascidiacea)种类繁多,约有1250种,包括单体和群体2种类型,附着于水下物体或营水底固定生活。单体型种类的最大体长可达200余mm,群体的全长可超过0.5m以上。群体型种类的许多个体都以柄相连,并被包围在一个共同的被囊内,但分别以各自的入水孔进水,有共同的排水口,如群体海鞘(Diplosoma)。广布于我国的海鞘纲动物有米氏小叶鞘(Leptoclinummitsukurii)、星座美洲海鞘(Amarou-ciumconstellatum)、长纹海鞘(Ascidialongistriata)、玻璃海鞘(Cionaintestinalis)、3种菊海鞘(Botryllusssp.)、瘤海鞘(Styelacanops)、乳突皮海鞘(Molgulamanhattensis)、龟甲海鞘(Chely-osoma)、西门登拟菊海鞘(Botrylloidessimodensis)等。乳突皮海鞘和柄海鞘是连云港以北黄、渤海沿岸污损生物中的优势种,瘤海鞘大量出现在香港、西沙永兴岛和琛航岛等南海海域内。樽海鞘纲樽海鞘纲(Thaliacea)本纲动物大多是营自由游泳生活的漂浮型海鞘,体呈桶形或樽形,咽壁有2个或更多的鳃裂。成体无尾,入水孔和出水孔分别位于身体的前后端。被囊薄而透明,囊外有环状排列的肌肉带,肌肉带自前往后依次收缩时,流进入水孔的水流即可从体内通过出水孔排出,以此推动樽海鞘前进,并在此过程中完成摄食和呼吸作用。生活史较复杂,繁殖方式是有性与无性的世代交替。樽海鞘纲约有65种,代表动物有樽海鞘(Doliolumdeuticula-tum),我国厦门沿海曾发现过小海樽(Doliolettanatilnalis)。磷海鞘(Pyrosomaatlanticum)为群体型种类,身体总长度可达200mm〜600mm,因其口孔内缘有磷光器,漂浮游泳时能发出闪烁的磷光而得名,别名火体虫。尾索动物的演化尾索动物是最低等的脊索动物,与高等脊索动物存在着演化上的亲缘关系,两者可能都是从类似海鞘幼虫型营自由生活的共同祖先--原始无头类动物演化而来。这类原始无头类动物不但将幼体时期的尾和自由游泳的生活方式保留到成体,甚至还消失了生活史中营固着生活的阶段,并通过幼态滞留及幼体性成熟途径发展为头索动物和脊椎动物。尾索动物是在进化过程中适应特殊生活方式的一个退化分支,除保留滤食的咽及营呼吸作用的咽鳃裂外,大多数种类已在变态中失去所有的进步特征,并向固着生活的方向发展(2)头索动物亚门头索动物亚门(Cephalochordata)没真正的脑分化,故称无头类。上述脊索动物的3大特征终生存在。脊索纵贯全身,并向前延伸至背神经管前端。头索动物是一类终生具有发达脊索、背神经管和咽鳃裂等特征的无头鱼形脊索动物。包括头索纲(Cephalochorda,又名狭心纲Leptocardii)、鳃口科(Branchiostomidae),约30种,分隶于文昌鱼和偏文昌鱼(Asymmetron)2个属。头索动物分布很广,遍及热带和温带的浅海海域,其中尤以北纬48°至南纬40°之间的沿海地区数量较多。 头索动物的脊索不但终生保留,且延伸至背神经管的前方,故称头索动物。又因本亚门动物都缺乏真正的头和脑,所以又称无头类。我国厦门、青岛等地所产的文昌鱼(Branchiostomabelcheri),可作为头索动物的代表。代表动物—白氏文昌鱼(Branchiostomabelcheri)百氏文昌鱼外形和生活方式文昌鱼的体形略似小鱼,无明显的头部,左右侧扁,半透明,无明显头部,可隐约见到皮下的肌节(myomere)和腹侧块状的生殖腺;身体两端尖出,故有双尖鱼(Amphioxus)之称,又因其尾形很像矛头而名海矛。一般体长约50mm,但产于美国的加州文昌鱼(Branchiostomacaliforniense)可超过100mm,是该属中已知个体最大的一种。前端的腹面为一漏斗状的口笠(oralhood),口笠内为前庭(vestibule),内壁有轮器(wheelorgan),由前庭引向位于一环形缘膜(velum)中央的口。口笠和缘膜的周围分别环生触须(cirri)及缘膜触手(velartentacle),具有保护和过滤作用,可阻挡粗砂等物随水流进入口中。整个背面沿中线有一条低矮的背鳍(dorsalfin),往后与高而绕尾的尾鳍(caudalfin)相连。此外在肛门之前还有肛前鳍(preanalfin)。无偶鳍,只在身体前部的腹面两侧各有一条由皮肤下垂形成的纵褶,称为腹褶(metapleurafold)。腹褶和肛前鳍的交界处有一腹孔(atripore),是咽鳃裂排水的总出口,故又名围鳃腔孔。文昌鱼喜栖浅海水质清澈的沙滩上,平时很少活动,常把身体半埋于沙中,前端露出沙外,或者左侧贴卧沙面,借水流携带矽藻等浮游生物进入口内。夜间较为活跃,凭藉体侧肌节的交错收缩,在海水中作短暂的游泳。寿命约2年8个月左右。6〜7月为生殖季节,一生中可繁殖3次,其中以最后一次产卵最多。福建沿海海区曾是我国文昌鱼生息繁衍的理想场所。1932-1956年,文昌鱼在同安县一地的捕捞区面积约有22km2,每升沙样中文昌鱼的数量达357条,当时因年产量约57吨而高居世界首位。1956年,由于厦门高(崎)集(美)海堤建成后,海况(切断了环岛的海流、沙地面积大幅度减少、盐度降低、水流减缓、淤泥沉积等)发生很大变化,再加上围海造田和乱捕滥捞等原因,严重地破坏了文昌鱼的生态环境,因而造成数量急剧下降的恶果,年产量减少了40%。1970年,当地的收购量甚至降低到只有1t左右。1986年,文昌鱼在这一海域的分布区已缩小到0.5km2,而每L沙样中的数量进一步减少到3条,使原来名闻遐迩的文昌鱼产地,在20世纪半个世纪内变得完全失去了水产捕捞价值。内部构造特征1.皮肤:皮肤薄而半透明,由单层柱形细胞的表皮和冻胶状结缔组织的真皮两部分构成,表皮外覆有一层角皮层(cuticle)。表皮外在幼体期生有纤毛,成长后则消失殆尽。2.骨骼:文昌鱼尚未形成骨质的骨骼,主要是以纵贯全身的脊索作为支持动物体的中轴支架。脊索外围有脊索鞘膜,并与背神经管的外膜、肌节之间的肌隔、皮下结缔组织等连续。脊索细胞呈扁盘状,其超显微结构与双壳类软体动物的肌细胞比较相似,收缩时可增加脊索的硬度。此外,在口笠触须、缘膜触手、轮器内部也都有角质物支持,奇鳍和鳃裂的鳍条(finrays)及鲤条(gillbar)由结缔组织支持。3.肌肉:文昌鱼背部的肌肉厚实而腹部比较单薄,与无脊椎动物周身体壁厚薄均匀的情况不同。全身主要的肌肉是60多对按节排列于体侧的较原始的"V"字形肌节(myomere),尖端朝前,肌节间被结缔组织的肌隔(myocomma)所分开。两侧的肌节互不对称,便于文昌鱼在水平方向作弯曲运动。此外,还有分布在围鳃腔腹面的横肌和口缘膜上的括约肌等,控制围鳃腔的排水及口孔的大小。4.消化和呼吸器官:文昌鱼靠轮器和咽部纤毛的摆动,使带有食物微粒的水流经口入咽,食物被滤下留在咽内,而水则通过咽壁的鳃裂至围鳃腔,然后由腹孔排出体外。作为收集食 物和呼吸场所的咽部极度扩大,几乎占据身体全长的1/2,咽腔内的构造与尾索动物相似,也具有内柱、咽上沟和围咽沟等。文昌鱼幼体的鳃裂直接开口于体表,后来形成围鳃腔,以腹孔作为咽部鳃裂的总出水口。该摄食方式为被动滤食摄食。咽内的食物微粒被内柱细胞的分泌物粘结成团,再由纤毛运动使它从后向前流动,经围咽沟转到咽上沟,往后推送进入肠内。肠为一直管,向前伸出一个盲囊,突入咽的右侧,称为肝盲囊(hepaticdiverticulum),能分泌消化液,与脊椎动物的肝脏为同源器官。食物团中的小微粒可进入肝盲囊,被肝盲囊细胞所吞噬,营细胞内消化,大微粒在肠内分解成小微粒 后,也转到肝盲囊中进行细胞内消化,未消化的物质由肝盲囊重返肠中,在后肠部进行消化和吸收。肠的末端开口于身体左侧的肛门。咽腔是文昌鱼完成呼吸作用的部位。咽壁两侧有60多对鲤裂,彼此以鲤条分开,鲤裂内壁布有纤毛上皮细胞和血管。水流进入口和咽时,藉纤毛上皮细胞的纤毛运动,通过鲤裂,并使之与血管内的血液进行气体交换,最后,水再由围鲤腔经腹孔排出体外。有人认为文昌鱼纤薄的皮肤也具有直接从水中摄取氧气的能力。脊索动物门5.血液循环文昌鱼循环系统属于闭管式,即血液完全在血管内流动,这种情形与脊椎动物基本相同。无心脏,但是具搏动能力的腹大动脉(ventralaorta),因而被称为狭心动物。由腹大动脉往两侧分出许多成对的鲤动脉(branchialarteries)进入鲤隔,鲤动脉不再分为毛细血管,它在完成气体交换的呼吸作用后,于鲤裂背部汇入2条背大动脉根。背大动脉根内含多氧血,往前流向身体前端,向后则由左、右背大动脉根合成背大动脉(dorsalaorta),再由此分出血管到身体各部。血液无色,也没有血细胞和呼吸色素,动脉中的血液通过组织间隙进入静脉。从身体前端返回的血液通过体壁静脉(parietalvein)注入一对前主静脉(anteriorcardinalvein);尾的腹面有一条尾静脉(caudalvein),收集一部分身体后部回来的血液,进入肠下静脉(subintestinalvein),大部分血液则流进2条后主静脉(posteriorcardinalvein)。左、右前主静脉和两条后主静脉的血液全部汇流至一对横形的总主静脉(commoncardinalvein),或称居维叶氏管(ductsCuvieri)。左、右总主静脉会合处为静脉窦(sinusvenosus),然后通入腹大动脉。从肠壁返回的血液由毛细血管网集合成肠下静脉,尾静脉的部分血液也注入其中;肠下静脉前行至肝盲囊处血管又形成毛细管网,由于这条静脉的两端在肝盲囊区都形成毛细血管,因此称作肝门静脉(hepaticportalvein)。由肝门静脉的毛细血管再一次合成肝静脉(hepaticvein)并将血液汇入静脉窦内。头索动物分类头索纲头索动物的进化意义头索动物身体结构比较简单,但脊索动物的典型结构已经具有,三大结构终生存在。根据形态学推测,脊索动物由一种左右不对称,无围腮腔、腮裂少、营自由生活的原始无头类演化而来,且在进化当中分为两支,一支适应自由生活,演变为原始有头类,进而走向脊椎动物;另一支向底栖生活发展,演变为尾索动物和头索动物。(3)脊椎动物亚门基本特征1.生活史某个时期具有脊索动物的三大特征(其中咽鲤裂陆生脊椎动物出生后没有)2.神经系统发达,脑与脊髓分化,感觉器官发达,适应环境的能力更强3.脊柱代替脊索成为支撑身体的中轴,更加坚固、灵活4.具有心脏,加速血液循环 1.具有较完善的排泄器官(陆生动物比水生动物发达),更有效排除代谢废物2.具有成对附肢(圆口纲除外)扩大生活范围,提高摄食、求偶、避敌的能力脊椎动物(Vertebrates)属于脊椎动物亚门,脊索或多或少被脊柱所代替,脑和感觉器官集中于前端,形成明显头部,称为有头类(Craniata)。脊椎动物分类(1)圆口纲(Cyclostomata):无颌,又称无颌类(Agnatha);无成对附肢。脊索终生存在,并出现雏形脊椎骨。(2)鱼纲(Pisces):又分为软骨鱼亚纲(Chondrichthyes)硬骨鱼亚纲(Osteichthyes)和辐鳍鱼亚纲(Actinopterygii)前者出现上下颌,体被盾鳞,出现成对的鳍,鳃裂直接开口于体外;后者骨骼一般为硬骨,体被硬鳞、圆鳞或栉鳞,鳃裂不直接开口于体表。(3)两栖纲(Amphibia):由水上陆的过渡种类,幼体鱼形,以鳃呼吸,成体出现5指(趾)型四肢,皮肤裸露,以肺和皮肤呼吸。与其他更高等脊椎动物共称为四足类(Tetrapoda)。(4)爬行纲(Reptilia):完全陆生。皮肤干燥,被以角质鳞、角质骨片或骨板。肺呼吸。胚胎发育中出现羊膜,与鸟类、哺乳类共称为羊膜类(Amniotes)。其他各纲脊椎动物称为无羊膜动物(Anomniotes)。(5)鸟纲(Aves):全身被羽,前肢变为翼,适应空中飞翔生活。血液循环为完全双循环,恒温,卵生。与哺乳类共称为恒温动物(Endotherm)。其他脊椎动物均为变温动物(Ectotherm)。(6)哺乳纲(Mammalia):体外被毛,恒温,胎生(单孔类除外),哺乳(具乳腺)。编辑本段相关资料脊索动物与无脊椎动物的区别与联系①脊索:脊索动物具有纵贯背部的脊索,后被脊柱所代替;无脊椎动物无脊索或脊柱。②中枢神经:脊索动物中空的神经中枢位于背部;无脊椎动物原生与海绵动物无神经系统,腔肠动物为网状神经系统,扁虫与线虫为梯状神经系统,环节与节肢动物中枢神经呈索状位于身体腹面。③鲤裂:脊索动物生活史的全部或部分时期具有鲤裂;无脊椎动物不具鲤裂。④心脏位置:脊索动物心脏位于消化道腹面;无脊椎动物心脏位于消化道背面或无心脏。⑤生物化学方面:脊索动物参与肌肉收缩能量代谢的非蛋白质含氮浸出物是磷酸肌酸;无脊椎动物的是磷酸精氨酸。脊索动物除上述特征外,其一些结构也见于一些无脊椎动物中,如后口、三胚层、两侧对称、真体腔、分节现象、闭管式血液循环等。两者的结构比较见。脊索动物的起源脊索动物无疑是由无脊椎动物起源的。而其中的棘皮动物和半索动物与脊索动物的亲缘关系较近的观点为大多数人所接受。经推测,脊索动物的祖先可能类似于尾索动物的幼体,它向两个方向发展,一是经过变态,成体为固者生活,具鳃裂作为取食和呼吸器官;另一个方向是幼体期延长并适应新的生活环境,不再变态,产生生殖腺并进行繁殖(即幼体性成熟),进而发展出新的一类动物,即具有脊索、背神经管和鳃裂的自由运动的脊索动物。之后分化为有颌类(鱼类祖先)和无颌类。脊索的出现在动物演化史上的意义脊索的出现是动物演化史中的重大事件,使动物体的支持、保护和运动的功能获得“质” 从而成为在动物界中占统治地位的的飞跃。这一先驱结构在脊椎动物达到更为完善的发展,一个类群。脊索(以及脊柱)构成支撑躯体的主梁,是体重的受力者,使内脏器官得到有力的支持和保护,运动肌肉获得坚强的支点,在运动时不致由于肌肉的收缩而使躯体缩短或变形,因而有可能向大型化”发展。脊索的中轴支撑作用也使动物体更有效地完成定向运动,对于主动捕食及逃避敌害都更为准确、迅捷。脊椎动物头骨的形成、颌的出现以及椎管对中枢神经的保护,都是在此基础上进一步完善化的发展。囹词条图册更多图册词条图片(5张) 扁形动物门囹求助编辑百科名片扁形动物门扁形动物门是动物界的一个门,无脊椎动物,是一类两侧对称,三胚层,无体腔,无呼吸系统、无循环系统,有口无肛门的动物。已记录的扁形动物约有15000种。生活于淡水、海水等潮湿处,体前端有两个可感光的色素点。体表部分或全部分布有纤毛。学学、乂:丁:中*拉尔扁形动物门界:动物界Platyhelminthes扁形动物门Platyhelminthes概论主要特征扁形动物的系统发展概论主要特征分类扁形动物的系统发展展开回编辑本段概论PhylumPlatyhelminthes扁形动物门Acoelomates动物界的一门、为无体腔最原始三胚层动物。扁形动物是动物界进化中的一个新阶段,体形转变成既能游泳又能爬行,体形背腹平扁两侧对称 的个体。身体明显地具有前、后、左、右及背腹之分。体前端形成一个可辨认的头部。背面司保护机能,腹面司移动和摄食的机能,神经系统和感觉器官使其对外界环境条件能及时反应。身体一般较小。扁形动物开始有发达的中胚层。出现肌肉系统,感受器亦趋完善,摄食、消化、排泄等机能也随之加强。由中胚层形成的间叶组织,亦称实质组织,充满体内各器官之间。能输送营养和排泄废物,组织细胞还有再生新的器官系统的能力。这在动物进化上都具有重要意义。多数雌雄同体、异体受精,少数种类雌雄异体。自由生活种类广泛分布在海水和淡水的水域中,少数在陆地上潮湿土中生活。大部分种类为寄生生活。全世界约1.2万种,中国已发现近1000种。按其形态结构及生活习性分为三纲:涡虫纲(ClassTurbellaria)、吸虫纲(ClassTrematoda)和绦虫纲(ClassCestoda)。扁形动物在动物进化史上占有重要地位,开始出现了两侧对称和中胚H(ectoderm),这对动物体结构和机能的进一步复杂、完善和发展,对动物从水生过渡到陆生奠定了必要的基础。与此相关的在扁形动物阶段出现了原始的排泄系统和梯式的神经系统等。扁形动物营自由生活或寄生生活。自由生活的种类(如涡虫纲)分布于海水、淡水或潮湿的土壤中,肉食性。寄生生活的种类(如吸虫纲和绦虫纲)则寄生于其它动物的体表或体内,摄取该动物的营养。扁形动物的形态及生理与其生活方式密切相关。营自由生活的扁形动物其形态与生理特征代表了扁形动物的进化发展水平。营寄生生活的扁形动物在形态与生理方面发生了许多改变,以适应寄生生活方式。编辑本段主要特征两侧对称(bilateralsymmetry)两侧对称从扁形动物开始出现了两侧对称的体型,即通过动物体的中央轴,只有一个对称面(或说切面)将动物体分成左右相等的两部分,因此两侧对称也称为左右对称。中月不层(mesoderm)从扁形动物开始,在外胚层和内层胚之间出现了中胚层。中胚层的出现对动物体结构与机能的进一步发展有很大意义。一方面由于中胚层的形成减轻了内、外胚层的负担,引起了一系列组织、器官、系统的分化,为动物体结构的进一步复杂完备提供了必要的物质条件,使扁形动物达到了器官系统水平。另一方面,由于中胚层的形成,促进了新陈代谢的加强。比如由中胚展形成复杂的肌肉层,增强了运动机能,再加上两侧对称的体 型。使动物有可能在更大的范围内摄取更多的食物。同时由于消化管壁上也有了肌肉,使消化管蠕动的能力也加强了、这些无疑促进了新陈代而一能的加强,由于代谢机能的加强,所产生的代谢废物也增多了,因此促进了排泄系统的形成。扁形动物开始有了原始的排泄系统一一原肾管系。又由于动物运动机能的提高,经常接触变化多端的外界环境,促进了神经系统和感觉器官的进一步发展。扁形动物的神经系统比腔肠动物有了显著地进步,已开始集中为梯型的神经系统。此外,由中胚层所形成的实质组织(parenchyma)有储存养料和水分的功能,动物可以耐饥饿以及在某种程度上抗干旱,因此,中胚层的形成也是动物由水生进化到陆生的基本条件之0皮肤肌肉囊(dermo—muscularsac)由于中胚层的形成而产生了复杂的肌肉构造,如环肌(circularmuscle)、纵肌(longitudinalmuscle)、斜肌(diagonalmuscle)。」外胚层形成的表皮相互紧贴而组成的体壁称为皮肤肌肉囊,它所形成的肌肉系统除有保护功能外,还强化了运动机能,加上两侧对称,使动物能够更快和更有效地去摄取食物,更有利于动物的生存和发展。在皮肌囊之内,为实质组织所充填,体内所有的器官都包埋于其中。消化系统(digestivesystem)消化系统与一般腔肠动物相似,通到体外的开孔既是口又是肛门,仅单咽目(Hyplopharyngida)涡虫,如单咽虫(Haplopharynx)有临时肛门,故称为不完善消化系统(incompletedigestivesystem)。除了肠以外没有广大的体腔。肠是由内脏层形成的盲管,营寄生生活的种类,消化系统趋于退化(如吸虫纲)或完全消失(绦虫纲)。排泄系统(excretorysystem)从扁形动物开始出现了原肾管(ProtonePhridium)的排泄系统。它存在于这门动物(除无肠目外)所有类群。原肾管是由身体两侧外胚层陷入形成的,通常由具许多分支的排泄管构成,有排泄孔通体外。每一小分支的最末端由焰细胞(flamecell)组成盲管。实际焰细胞是由帽细胞(capcell)和管细胞(tubulecell)组成。帽细胞位于小分支的顶端,盖在管细胞上,帽细胞生有两条或多条鞭毛,悬垂在管细胞中央。鞭毛打动.犹如火焰,故名焰细胞。电镜下,在两个细胞间或管细胞上有无数小孔,管细胞连到排泄管的小分支上。原肾管的作用,可能是通过焰细胞鞭毛的不断打动,在管的末端产生负压引起实质中的液体经过管细胞上细胞膜的过滤作用,CI-、K铐离子在管细胞处被重新吸收,产生低渗液体或水分, 经过管细胞膜上的无数小孔进入管细胞、排泄管经排泄孔排出体外。原肾管的功能主要是调节体内水分的渗透压同时也排出一些代谢废物。一些真正的排泄物如含氮废物是通过体表排出的。神经系统(nervoussystem)扁形动物的神经系统比腔肠动物有显著的进步。表现在神经细胞逐渐向前集中,形成脑及从“脑”向后分出若干纵神经索(longitudinalnervecord),在纵神经索之间有横神经(transversecommisure)相连。在高等种类,纵神经索减少,只有一对腹神经索发达,其中有横神经连接如梯形(或称梯式神经系统),脑与神经索都有神经纤维与身体各部分联系。可以说扁形动物出现了原始的中枢神经系统(centralnervoussystem)。这种神经系统虽比腔肠动物的网状神经系统高级,但它又是原始的,因为神经细胞不完全集中于“脑’,也分散在神经索中。生殖系统(reproductivesystem)生殖系统大多数雌雄同体,由于中胚层的出现,形成了产生雌雄生殖细胞的固定的生殖腺及一定的生殖导管,如输卵管(oviduct)、输精管(vasdeferens)等,以及一系列附属腺,如前列腺(prostategland)、卵黄腺(vitellaria)等。这样使生殖细胞能通到体外,进行交配和体内受精。编辑本段分类根据扁形动物的形态特征和生活方式的不同,本门动物可以分为以下3个纲:涡虫纲Turbellaria是扁形动物中最原始的类群,体表被工,肠道较发达,体长5mms60cm,已知约1千5百种,多数营自由生活。海洋生活的如旋涡虫Conv01utaschultrei;淡水中生活的如真涡虫Dugesia(Euplanaria);少数种类在陆地潮湿土中生活如土笄蛭涡虫Bipariu1nmkewense。吸虫纲Trematoda成虫体表无纤毛,肠道较简单,通常有口吸盘和腹吸盘等吸附器官。已知约6千种,均营寄生生活,生活史复杂,包含1〜2个中间宿主。如寄生在人体门静脉内的日本血吸虫Schistos0majap0nicum,给人体以极大的 危害,此外尚有寄生在人体肝脏的华枝睾吸虫Clonrchussinensis;寄生在人体肺内的魏氏并殖吸虫ParagOnimuswestermani等。绦虫纲Cestoda成虫体表无纤毛,消化系统包括口和肠等全部退化消失,成虫一般作长带状,由多数节片组成,有吸盘和钩等附着器官,已知约有3千4百种,全为营体内寄生生活,寄生在脊椎动物的肠道等器官内,为高度营寄生生活的类群。如猪带绦虫Taeniasolium和牛带绦虫Taeniasaginatus。编辑本段扁形动物的系统发展关于扁形动物的起源问题学者们的意见尚未一致。一种学说是郎格(lang)所主张的,认为扁形动物是由爬行栉水母进化来的。因栉水母在水底爬行,丧失了游泳机能,体形扁平,口在腹面中央等特征与涡虫纲的多肠目极相似。另一种学说是由格拉夫(Graff)所提出的认为扁形动物的祖先是浮浪幼虫样的,这像浮泪幼虫的祖先适应爬行生活后,体形扁平,神经系统移向前方,原口留在腹方,而演变为涡史纲中的无肠目。这2种学说都有它们的根据,但是无肠目的有机结构是最简组和最原始的,因此后一种学说可能更为正确。这是多年来多数学者们一致的看法。但是近年来也有些学者认为大口目涡虫是最原始的一类。无肠目及链虫目涡虫是由大口目祖先分出的分支。扁形动物中,自由生活的涡虫纲是最原始的类群。吸虫纲无疑是由涡虫纲适应寄生生活的结果而演变来的。吸虫的神经、排泄等系统的形式与涡虫纲单肠目极为相似(部分涡虫营共栖生活,纤毛和感觉器官趋于退化,与吸虫很相似,而吸虫的幼虫时期也有纤毛,寄生后才消失。这些事实都可以证实营寄生生活的吸虫是起源于自由生活的涡虫。关于绦虫纲的起源问题有两种着法;一种认为它是吸虫对寄生生活进一步适应的结果,认为单节绦虫亚纲体不分节,形态很像吸虫,但是单节绦虫亚纲和其他绦虫的关系不大;一种认为绦虫起源于涡虫纲中的单肠目,因为它们的排泄系统和神经系统都很相似,而且单肠目中有借无性繁殖组成链状群体的现象,这和绦虫产生节片的能力可能有关系。因此,后一种看祛是比较可信的。 原腔动物门囹求助编辑百科名片原腔动物门原腔动物门(Protocoelomata):原腔动物又称假体腔动物或线形动物,是一类宠大而复杂的动物类群,种类达18000多种,形态差别很大,并且他们的发展历史不详,亲缘关系不明,但他们都有假体腔.假体腔动物划分为7个门:线虫门、线形动物门、棘头动物门、轮虫门、动吻动物门、内肛动物门目录门的主要特征线虫纲轮虫纲进化地位门的主要特征1,具有原体腔(假体腔pseudocoelomate,初生体腔)1)概念:它是指体辟内侧中胚层和肠壁外侧内胚层之间的空腔,是囊胚腔的剩余部分.2)特点:①只有体壁中胚层,无肠壁中胚层②假体腔直接与肌肉为界,无中胚层形成的体腔膜和肠系膜③是一封闭的腔,充满体腔液.3)生物学意义:①体腔的出现,促进肠道与体壁独立运动②使内腔器官具有稳定内环境.原体腔的含义,特点,生物学意义是这章的重点!!2,体形圆柱形,体不分节,无明显头部,外覆角质膜.3,具完全消化系统:口一食道一中肠一直肠一肛门4,还未有专门的循环系统和呼吸系统:体腔液的流动起循环作用;体表呼吸,寄生种类厌氧呼吸. 5,原肾管型的排泄系统:管型或腺型线虫的排泄器官属于原肾型,而结构不典型,是由腺型细胞或由细胞形成的管完成排泄功能.原始的种类只有1—2个大型的腺细胞进行排泄及水分调节,也称肾细胞(renettecell).另一些种,腺型肾细胞延伸成管型排泄器,多呈H型管.6,筒状神经系统:神经系统简单,由神经环,纵神经干,神经节构成,呈筒状.线虫咽的周围有一环状的脑,环的两侧膨大成神经节,由脑环向前后各分出六条神经,前端的神经分布到唇,乳突及化感器等.向后的六条神经中,一条为背神经,一条为腹神经,二对侧神经,两对侧神经离开脑环后很快合并成一对,最后的这四条神经分别位于相应的纵行上皮索内,其中腹神经最发达,由腹神经发出分支到肠及肛门.另外在脑环周围,神经细胞集中,形成神经节状.7,大多数雌雄异形异体,生殖器官呈管状.线虫纲是假体腔动物中种类和数量最多,最主要的一个类群已知有15000多种,且分布广泛,阴湿或有水源的地方都有,如海洋,淡水,土壤,阴湿地带,林区,及动,植物的体内都会分布,单单寄生于人体就有100多种线虫.1,代表动物——人蛔虫:成虫与幼虫均在人体内寄生.⑴外形,内部结构:(2)生活史:成虫在人体小肠内交配并产卵,每头雌虫日产卵量可高达20万粒,卵随寄主粪便排到体外.卵到外界在20—30C,阳光充足,潮湿松软的土壤中经二周后在310卵内发育成幼虫,一周后幼虫在卵内脱皮一次成为具感染能力的卵.新排出的卵没有感染力.人如吞食了感染卵,卵到小肠后则幼虫孵化,幼虫穿过肠粘膜进入静脉,并随血液在体内循环,经过肝,心脏,最后到达肺部,幼虫在肺泡内寄生,在肺泡内脱皮两次,随咳嗽等动作沿气管逆行又回到咽部,再经吞咽动作又进入消化道中,进入小肠后再脱皮一次,数周后发育成成虫,人体自虫卵感染到雌虫产卵,约需60—70天,成虫在人体内存活一■年左右.(3)危害:人如少量感染蛔虫,并不引起明显症状,如果严重感染则对人体造成很大危害.幼虫在人体内移行时,释放出免疫原性物质,引起寄主局部或全身的变态反应,如肺部炎症,痉挛性咳嗽,体温上升等.成虫在小肠内寄生,引起小肠粘膜机械性损伤,以致消化吸收不良,病人腹疼,食欲不振,严重时儿童会出现贫血,发育障碍等症状.体内大量成虫寄生,会出现成虫扭曲成团造成肠梗阻或成虫侵入胆囊,造成胆囊炎,胆道穿孔,胰腺炎,腹膜炎等.因此积极治疗病人,管理粪便,改善环境条件及注意个人卫生是控制蛔 虫流行的重要手段.2,纲的特点:身体线形,有角质膜,合胞体层,侧线.假体腔,体表呼吸或厌氧呼吸.自由生活或寄生.3,主要类群:血丝虫,烧虫,钩虫,鞭虫,旋毛线虫,小麦线虫轮虫纲轮形动物主要是淡水生活,身体前端有一个轮盘的小型动物,约有1800种左右.这类动物在生态,形态方面有多样性,例如有自由生活的,也有共生与寄生的;有淡水,海水中自由游泳的,也有在潮湿土壤中附着生活的,有底栖的,也有管居或固着的;有单体的,也有群体的.许多种是世界性分布的.1,特点:体型极小(0.04-2mm),淡水最多,海产不多,寄生更少.身体分头,躯干和尾,具轮盘(头冠或纤毛环).消化系统具咀嚼器,胃及消化腺.2,生殖特点:雌雄异体异形,周期性孤雌生殖.孤雌生殖:成熟雌体产的卵不经受精,就能发育为新个体的生殖方式.周期性孤雌生殖:有性生殖和孤雌生殖交替进行的生殖方式^3,经济意义:鱼类的优质饵料;净化池水.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭